精英家教网 > 高中数学 > 题目详情
已知|a|=2,|b|=4,向量a与b的夹角为60°,当(a+3b)⊥(ka-b)时,实数k的值是( )
A.
B.
C.
D.
【答案】分析:利用向量的数量积公式求出两个向量的数量积,利用向量垂直的充要条件列出方程,求出k的值.
解答:解:依题意得=||•||•cos60°=2×4×=4,
因为()⊥(),
所以
得ka2+(3k-1)a•b-3b2=0,
即k+3k-1-12=0,
解得k=
故选C
点评:解决向量垂直的问题,应该利用向量垂直的充要条件:数量积为0即向量的坐标对应的乘积和为0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知a=
2
,b=2,B=45°,则角A=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=2,b=
2
,C=
π
4
,求角A、B和边c.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•宝山区一模)已知|
a
| =2
|
b
| =
2
a
b
的夹角为45°,要使λ
b
-
a
a
垂直,则λ=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=2,b=3,C=60°,试证明△ABC为锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|
=2,|
b
|
=3,|
a
-
b
|
=
7
,则向量
a
与向量
b
的夹角是(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

同步练习册答案