【题目】在平面角坐标系
中,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,将曲线
向左平移
个单位长度得到曲线
.
(1)求曲线
的参数方程;
(2)已知
为曲线
上的动点,
两点的极坐标分别为
,求
的最大值.
科目:高中数学 来源: 题型:
【题目】北京时间3月15日下午,谷歌围棋人工智能
与韩国棋手李世石进行最后一轮较量,
获得本场比赛胜利,最终人机大战总比分定格
.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有
的把握认为“围棋迷”与性别有关?
![]()
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为
。若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.
附:
,其中
.
| 0.05 | 0.01 |
| 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求
的普通方程和
的倾斜角;
(2)设点
和
交于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(Ⅰ)求曲线
在点
处的切线的斜率;
(Ⅱ)判断方程
(
为
的导数)在区间
内的根的个数,说明理由;
(Ⅲ)若函数
在区间
内有且只有一个极值点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,平面
平面
,且
,
.四边形
满足
,
,
.
为侧棱
的中点,
为侧棱
上的任意一点.
![]()
(1)若
为
的中点,求证: 面
平面
;
(2)是否存在点
,使得直线
与平面
垂直? 若存在,写出证明过程并求出线段
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
为参数).
(1)将曲线
的极坐标方程化为直角坐标方程;
(2)若直线
与曲线
相交于
两点,且
,求直线
的倾斜角
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面角坐标系
中,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,将曲线
向左平移
个单位长度得到曲线
.
(1)求曲线
的参数方程;
(2)已知
为曲线
上的动点,
两点的极坐标分别为
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com