精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的左、右焦点分别为F1F2,以线段F1F2为直径的圆与双曲线的渐近线在第一象限的交点为P,且P满足|PF1||PF2|2b,则C的离心率e满足(  )

A. e23e+10B. e43e2+10C. e2e10D. e4e210

【答案】D

【解析】

可设|PF1|m|PF2|n,运用直角三角形的勾股定理,渐近线方程与圆方程联立,求得P的坐标,再由直角三角形的面积公式,结合离心率公式,计算即可得到所求关系式.

可设|PF1|m|PF2|n,可得mn2b在直角三角形PF1F2中,m2+n24c2

①②可得mn2c22b2,由渐近线方程yx和圆x2+y2c2

可得Pab),由三角形的面积公式可得:mn2cb,即c2b2cb

可得a2cb,即有a4c2c2a2)=c4c2a2,由离心率e可得1e4e2

即有e4e210

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数y=fx)在区间D上是增函数,且函数y=在区间D上是减函数,则称函数fx)是区间D上的“H函数”.对于命题:

①函数fx)=-x+是区间(0,1)上的“H函数”;

②函数gx)=是区间(0,1)上的“H函数”.下列判断正确的是(  )

A. 均为真命题 B. 为真命题,为假命题

C. 为假命题,为真命题 D. 均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义首项为1且公比为正数的等比数列为“M-数列”.

1)已知等比数列{an}满足:,求证:数列{an}为“M-数列”;

2)已知数列{bn}满足:,其中Sn为数列{bn}的前n项和.

①求数列{bn}的通项公式;

②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当km时,都有成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数与月份之间的回归直线方程

(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)= ,若x1x2R,且x1x2,使得fx1)=fx2),则实数a的取值范围是(  )

A. [23]∪(﹣∞,﹣5]B. (﹣∞,2)∪(35

C. [23]D. [5+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴相切,并且圆心在直线上.

(1)如果圆轴相切于点,求圆的方程;

(2)如果圆被直线截得的弦长为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量单位:万只与相应年份序号的数据表和散点图如图所示,根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数单位:个关于x的回归方程

年份序号x

1

2

3

4

5

6

7

8

9

年养殖山羊万只

根据表中的数据和所给统计量,求y关于x的线性回归方程参考统计量:

试估计:该县第一年养殖山羊多少万只

到第几年,该县山羊养殖的数量与第一年相比缩小了?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.

(1)求图中a的值

(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:

A试验区

B试验区

合计

优质树苗

20

非优质树苗

60

合计

将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;

(3)用样本估计总体若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.)

查看答案和解析>>

同步练习册答案