精英家教网 > 高中数学 > 题目详情

若函数),满足,且 的最小值等于,则函数的一个单调递增区间是(   )

A.      B.       C.       D. 

 

【答案】

D

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,则称f(x)为优美函数.在下列四个函数中,优美函数是(  )
A、f(x)=|x|
B、f(x)=
1
x
C、f(x)=2x
D、f(x)=x2

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出四个命题:
①函数f(x)=
x
-(
1
4
)x
的零点在区间(
1
4
1
3
)
内;
②若函数f(x)满足f(1)=1,f(x+1)=2f(x),则f(1)+f(2)+…+f(10)=1023;
③“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b都不是奇数”;
④“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题.
其中所有正确的命题序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
ax3+
1
2
bx2+cx(a,b,c∈R,a≠0)
的图象在点(x,f(x))处的切线的斜率为k(x),且函数g(x)=k(x)-
1
2
x
为偶函数.若函数k(x)满足下列条件:①k(-1)=0;②对一切实数x,不等式k(x)≤
1
2
x2+
1
2
恒成立.
(Ⅰ)求函数k(x)的表达式;
(Ⅱ)求证:
1
k(1)
+
1
k(2)
+…+
1
k(n)
2n
n+2
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都模拟)若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)=f(x0)+f(k)(k为常数),则称“f(x)关于k可线性分解”
(1)函数f(x)=2x+x2是否关于1可线性分解?请说明理由;
(2)已知函数g(x)=lnx-ax+1(a>0)关于a可线性分解,求a的范围;
(3)在(2)的条件下,当a取最小整数时,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)若函数h(x)满足
①h(0)=1,h(1)=0;
②对任意a∈[0,1],有h(h(a))=a;
③在(0,1)上单调递减.则称h(x)为补函数.已知函数h(x)=(
1-xp
1+λxp
)
1
p
(λ>-1,p>0)
(1)判函数h(x)是否为补函数,并证明你的结论;
(2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p=
1
n
(n∈N+)时h(x)的中介元为xn,且Sn=
n
i=1
xi
,若对任意的n∈N+,都有Sn
1
2
,求λ的取值范围;
(3)当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1-x的上方,求P的取值范围.

查看答案和解析>>

同步练习册答案