【题目】已知函数
,若有且仅有两个整数
,使得
,则
的取值范围为( )
A.
B.
C.
D. ![]()
【答案】B
【解析】分析:设g(x)=ex(3x﹣1),h(x)=ax﹣a,对g(x)求导,将问题转化为存在2个整数x0使得g(x0)在直线h(x)=ax﹣a的下方,求导数可得函数的极值,解g(﹣1)﹣h(﹣1)<0,g(﹣2)﹣h(﹣2)>0,求得a的取值范围.
详解:设g(x)=ex(3x﹣1),h(x)=ax﹣a,
则g′(x)=ex(3x+2),
∴x∈(﹣∞,﹣
),g′(x)<0,g(x)单调递减,
x∈(﹣
,+∞),g′(x)>0,g(x)单调递增,
∴x=﹣
,取最小值﹣3
,
∴g(0)=﹣1<﹣a=h(0),
g(1)﹣h(1)=2e>0,
因为直线h(x)=ax﹣a恒过定点(1,0)且斜率为a,
∴g(﹣1)﹣h(﹣1)=﹣4e﹣1+2a≤0,
∴a≤
,
g(﹣2)=
,h(﹣2)=﹣3a,
由g(﹣2)﹣h(﹣2)≥0,解得a≥
.
综上所述,
的取值范围为
.
故选B.
科目:高中数学 来源: 题型:
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.
参考公式:
,其中
.
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点为
,点
为
上异于顶点的任意一点,过
的直线
交
于另一点
,交
轴正半轴于点
,且有
,当点
的横坐标为3时,
为正三角形.
(1)求
的方程;
(2)若直线
,且
和
相切于点
,试问直线
是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,那么下列结论中错误的是( )
A. 若
是
的极小值点,则
在区间
上单调递减
B.
,使![]()
C. 函数
的图像可以是中心对称图形
D. 若
是
的极值点,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查一款电视机的使用时间,研究人员对该款电视机进行了相应的测试,将得到的数据统计如下图所示:
![]()
并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:
愿意购买这款电视机 | 不愿意购买这款电视机 | 总计 | |
40岁以上 | 800 | 1000 | |
40岁以下 | 600 | ||
总计 | 1200 |
(1)根据图中的数据,试估计该款电视机的平均使用时间;
(2)根据表中数据,判断是否有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关;
(3)若按照电视机的使用时间进行分层抽样,从使用时间在
和
的电视机中抽取5台,再从这5台中随机抽取2台进行配件检测,求被抽取的2台电视机的使用时间都在
内的概率.
附: | 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841> | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,各类手机娱乐软件也如雨后春笋般涌现. 如表中统计的是某手机娱乐软件自2018年8月初推出后至2019年4月底的月新注册用户数,记月份代码为
(如
对应于2018年8月份,
对应于2018年9月份,…,
对应于2019年4月份),月新注册用户数为
(单位:百万人)
![]()
(1)请依据上表的统计数据,判断月新注册用户与月份线性相关性的强弱;
(2)求出月新注册用户关于月份的线性回归方程,并预测2019年5月份的新注册用户总数.
参考数据:
,
,
.
回归直线的斜率和截距公式:
,
.
相关系数
(当
时,认为两相关变量相关性很强. )
注意:两问的计算结果均保留两位小数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】独立性检验中,假设
:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得
的观测值
.下列结论正确的是( )
附:
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
A. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关
B. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关
C. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关
D. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com