精英家教网 > 高中数学 > 题目详情

若对正常数m和任意实数x,等式f(x+m)=成立,则下列说法正确的是( )

A.函数f(x)是周期函数,最小正周期为2m

B.函数f(x)是奇函数,但不是周期函数

C.函数f(x)是周期函数,最小正周期为4m

D.函数f(x)是偶函数,但不是周期函数

 

答案:C
提示:

函数周期性的性质。

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为实常数,m≠-3且m≠0.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且b1=a1bn=
3
2
f(bn-1)(n∈N*,n≥2)
,求{bn}的通项公式;
(3)若m=1时,设Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整数k,使得对任意n∈N*均有Tn
k
8
成立,若存在求出k的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

A已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,设bn+2=3log
1
4
an  (n∈N*)
,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若cn
1
4
m2+m-1
对一切正整数n恒成立,求实数m的取值范围.
B已知数列{an}和{bn}满足:a1=λ,an+1=
2
3
an+n-4
bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(Ⅰ)对任意实数λ,证明:数列{an}不是等比数列;
(Ⅱ)证明:当λ≠-18时,数列{bn}是等比数列;
(Ⅲ)设0<a<b(a,b为实常数),Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

A已知数列{an}是首项为数学公式,公比q=数学公式的等比数列,设数学公式数学公式,数列{cn}满足cn=an•bn

(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若数学公式对一切正整数n恒成立,求实数m的取值范围.
B已知数列{an}和{bn}满足:a1=λ,数学公式数学公式,其中λ为实数,n为正整数.
(Ⅰ)对任意实数λ,证明:数列{an}不是等比数列;
(Ⅱ)证明:当λ≠-18时,数列{bn}是等比数列;
(Ⅲ)设0<a<b(a,b为实常数),Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省六安市舒城中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

A已知数列{an}是首项为,公比q=的等比数列,设,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若对一切正整数n恒成立,求实数m的取值范围.
B已知数列{an}和{bn}满足:a1=λ,,其中λ为实数,n为正整数.
(Ⅰ)对任意实数λ,证明:数列{an}不是等比数列;
(Ⅱ)证明:当λ≠-18时,数列{bn}是等比数列;
(Ⅲ)设0<a<b(a,b为实常数),Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆一中高三(上)10月月考数学试卷(理科)(解析版) 题型:解答题

设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为实常数,m≠-3且m≠0.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且,求{bn}的通项公式;
(3)若m=1时,设Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整数k,使得对任意n∈N*均有成立,若存在求出k的值,若不存在请说明理由.

查看答案和解析>>

同步练习册答案