【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数,
),曲线
的参数方程为
(
为参数),以
为极点,
轴的正半轴为极轴建立坐标系.
(1)求曲线
的极坐标方程和曲线
的普通方程;
(2)射线
与曲线
的交点为
,与曲线
的交点为
,求线段
的长.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
经过点
,左右焦点分别为
、
,圆
与直线
相交所得弦长为2.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设
是椭圆
上不在
轴上的一个动点,
为坐标原点,过点
作
的平行线交椭圆
于
、
两个不同的点.
(1)试探究
的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.
(2)记
的面积为
,
的面积为
,令
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x|,g(x)=lg(ax2﹣4x+1),若对任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),则实数a的取值范围是( )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是( )
A.
, ![]()
B.
, ![]()
C.
, ![]()
D.
, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在(0,
)上的函数f(x)的导函数为f′(x),且对于任意的x∈(0,
),都有f′(x)sinx<f(x)cosx,则( )
A.
f(
)>
f(
)
B.f(
)>f(1)
C.
f(
)<f(
)
D.
f(
)<f(
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角△ABC中,AB⊥BC,D为BC边上异于B、C的一点,以AB为直径作⊙O,并分别交AC,AD于点E,F. ![]()
(1)证明:C,E,F,D四点共圆;
(2)若D为BC的中点,且AF=3,FD=1,求AE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1||l2 , 则x=( ).
A.2
B.-2
C.4
D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com