已知点
,动点
满足
.
(1)求动点P的轨迹方程;
(2)设(1)中所求轨迹与直线
交于点
、
两点 ,求证
(
为原点)。
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的右焦点
在圆
上,直线
交椭圆于
、
两点.
(1)求椭圆
的方程;
(2)若
(
为坐标原点),求
的值;
(3)设点
关于
轴的对称点为
(
与
不重合),且直线![]()
与
轴交于点
,试问
的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
:
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线
与椭圆交于S、T两点,与抛物线交于C、D两点,且
.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过点
的直线与椭圆
相交于两点
,设
为椭圆
上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F1,F2是离心率为
的椭圆C:
(a>b>0)的左、右焦点,直线:x=-
将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.![]()
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
:
的右焦点为
且
为常数,离心率为
,过焦点
、倾斜角为
的直线
交椭圆
与M,N两点,
(1)求椭圆
的标准方程;
(2)当
=
时,
=
,求实数
的值;
(3)试问
的值是否与直线
的倾斜角
的大小无关,并证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为![]()
(1)求双曲线C的方程;
(2)若直线
与双曲线C恒有两个不同的交点A和B,且
(其中O为原点). 求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设圆
的极坐标方程为
,以极点为直角坐标系的原点,极轴为
轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆
上的一点
作平行于
轴的直线
,设
与
轴交于点
,向量
.
(Ⅰ)求动点
的轨迹方程;
(Ⅱ)设点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的长轴长为
,离心率为
,
分别为其左右焦点.一动圆过点
,且与直线
相切.
(1)求椭圆
及动圆圆心轨迹
的方程;
(2) 在曲线
上有两点
、
,椭圆
上有两点
、
,满足
与
共线,
与
共线,且
,求四边形
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com