如图所示,已知A、B、C是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且
,|BC|=2|AC|.![]()
(1)求椭圆E的方程;
(2)在椭圆E上是否存点Q,使得
?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.
(3)过椭圆E上异于其顶点的任一点P,作
的两条切线,切点分别为M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:
为定值.
(1)
;(2)满足条件的点Q存在,且有两个.
解析试题分析:本题主要考查椭圆的标准方程及其性质,考查学生的转化思想和数形结合思想,考查分析问题解决问题的能力和计算能力.第一问,先由长轴长得到a的值,设出椭圆的标准方程,利用已知条件数形结合得到C点坐标,将C点坐标代入到椭圆中,得到b的值,从而得到椭圆的标准方程;第二问,先设出Q点坐标,利用已知等式计算,可知点Q在直线
上,点
在直线上,而在椭圆内部,数形结合得存在点Q而且存在2个;法二:用
和椭圆方程联立消参,得到关于x的方程,看方程的判别式,判别式大于0时,方程有2个根,则直线与椭圆有2个交点;第三问,设出点P的坐标,由切线的性质得四点共圆,此圆的圆心为
,直径为OP,得到此圆的方程,M、N既在此圆上,又在圆O上,2个方程联立,解出直线MN的方程,得出截距的值,再转化出P点坐标代入到椭圆中即可;法二:设出点P、M、N的坐标,利用直线的垂直关系,利用斜率列出等式,转化成直线PM和直线PN的方程,从而得到直线MN的方程.
试题解析:(1)依题意知:椭圆的长半轴长
,则A(2,0),
设椭圆E的方程为
2分
由椭圆的对称性知|OC|=|OB|又∵
,|BC|=2|AC|
∴AC⊥BC,|OC|=|AC|∴△AOC为等腰直角三角形,
∴点C的坐标为(1,1),点B的坐标为(-1,-1), 4分
将C的坐标(1,1)代入椭圆方程得![]()
∴所求的椭圆E的方程为
5分
(2)解法一:设在椭圆E上存在点Q,使得
,设
,则![]()
即点Q在直线
上, 7分
∴点Q即直线
与椭圆E的交点,
∵直线
过点
,而点椭圆
在椭圆E的内部,
∴满足条件的点Q存在,且有两个. 9分
解法二:设在椭圆E上存在点Q,使得
,设
,则![]()
即
, ① -7分
又∵点Q在椭圆E上,∴
, ②
由①式得
代入②式并整理得:
, -③
∵方程③的根判别式
,
∴方程③有两个不相等的实数根,即满足条件的点Q存在,且有两个. 9分
(3)解法一:![]()
设点
,由M、N是
的切点知,
,
∴O、M、P、N四点在同一圆上, 10分
且圆的直径为OP,则圆心为
,
其方程为
, 11分
即
-④
即点M、N满足方程④,又点M、N都在
上,
∴M、N坐标也满足方程
-⑤
⑤-④得直线MN的方程为
, 12分
令
得
,令
得
, 13分
∴
,又点P在椭圆E上,
∴
,即
=定值. 14分
解法二:设点
则![]()
![]()
科目:高中数学 来源: 题型:解答题
已知曲线
的方程为
,过原点作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,如此下去,一般地,过点
作斜率为
的直线与曲线
相交,另一个交点记为
,设点
(
).
(1)指出
,并求
与
的关系式(
);
(2)求
(
)的通项公式,并指出点列
,
,
,向哪一点无限接近?说明理由;
(3)令
,数列
的前
项和为
,试比较
与
的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点,焦点在
轴上的椭圆过点
,且它的离心率
.
(1)求椭圆的标准方程;
(2)与圆
相切的直线
交椭圆于
两点,若椭圆上一点
满足
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)过右焦点
作斜率为
的直线
交曲线
于
、
两点,且
,又点
关于原点
的对称点为点
,试问
、
、
、
四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,以原点
为圆心,椭圆的短半轴长为半径的圆与直线
相切。
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交于
、
两点,且
,试判断
的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的右焦点
与抛物线
的焦点重合,过
且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且![]()
![]()
(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线
与椭圆相交于不同两点A和B,且满足
(O为坐标原点),求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的短半轴长为
,动点![]()
在直线
(
为半焦距)上.
(1)求椭圆的标准方程;
(2)求以
为直径且被直线
截得的弦长为
的圆的方程;
(3)设
是椭圆的右焦点,过点
作
的垂线与以
为直径的圆交于点
,
求证:线段
的长为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的由顶点为A,右焦点为F,直线
与x轴交于点B且与直线
交于点C,点O为坐标原点,
,过点F的直线
与椭圆交于不同的两点M,N.![]()
(1)求椭圆的方程;
(2)求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为
时,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com