精英家教网 > 高中数学 > 题目详情
已知A(a,0),B(0,a),a>0,点P在线段AB上,且
AP
=t
AB
(0≤t≤1),则
OA
OP
的最大值是
a2
a2
分析:首先分析题目已知A、B的坐标,点P在线段AB上,且
AP
=t
AB
(0≤t≤1),求
OA
OP
的最大值.故可考虑根据向量的坐标及加减运算表示出
OA
OP
.然后根据平面向量的数量乘积运算求出结果即可.
解答:解:因为点A、B的坐标分别为(a,0),(0,a)
所以
AB
=(-a , a)
OA
=(a,0)
又由点P在线段AB上,且
AP
=t
AB
=(-at,at)
所以
OP
=
OA
+
AP
=(a,0)+(-at,at)=(-at+a,at)
OA
OP
=(a,0)•(-at+a,at)=-a2t+a2
当t=0时取最大值为:a2
故答案为:a2
点评:此题主要考查平面向量的数量乘积的运算问题,其中涉及到向量的坐标表示及加法运算,题目覆盖知识点少,属于基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c,d为实数,判断下列命题的真假.
(1)若ac2>bc2,则a>b
(2)若a<b<c,则 a2>ab>b2
(3)若a>b>0,则
a
d
b
c

(4)若0<a<b,则 
b
a
b+x
a+x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州一模)已知F1,F2分别是椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C1:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB相交于点D,与椭圆C1相交于点E,F两点,求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E:
x2
a2
-
y2
b2
=1(a>b>0)的离心率为
2
2
,已知A(a,0),B(0,-b),且原点O到直线AB的距离为
2
3
3

(Ⅰ)  求椭圆E的方程;
(Ⅱ)已知过点M(1,0)的直线交椭圆E于C,D两点,若存在动点N,使得直线NC,NM,ND的斜率依次成等差数列,试确定点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,我把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(-1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.
(1)求两条射线AE,BF所在直线的距离;
(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间向量
a
=(a1,a2,a3),
b
=(b1,b2,b3),定义两个空间向量
a
b
之间的距离为d(
a
b
)=
3
i=1
|bi-ai|.
(1)若
a
=(1,2,3),
b
=(4,1,1),
c
=(
11
2
1
2
,0),证明:d(
a
b
)+d(
b
c
)=d(
a
c

(2)已知
c
=(c1,c2,c3
    ①证明:若?λ>0,使
b
-
a
=λ(
c
-
b
),则d(
a
b
)+d(
a
c
)=d(
a
c
).
    ②若d(
a
b
)+d(
b
c
)=d(
a
c
),是否一定?λ>0,使
b
-
a
=λ(
c
-
b
)?请说明理由.

查看答案和解析>>

同步练习册答案