精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,E,F分别是AB,PD的中点,若
①求证:AF∥平面PCE
②求证:平面PCE⊥平面PCD
③求直线FC与平面PCE所成角的正弦值.

【答案】分析:①根据有中点找中点做出辅助线,得到三组线线平行,得到四边形是一个平行四边形,得到线线平行,根据线面平行的判断得到结论.
②要证明面面垂直,根据证明面面垂直的判断需要找一条和两个平面垂直的一条直线,根据线面垂直的判断和性质,得到结论.
③在平面PCD内作FH⊥PC,则FH⊥平面PCE,得到∠FCH是FC与平面PCE所成的角,在这个可解的三角形中,求出角的正弦值.
解答:解:①取PC中点G,连接EG,FG;又由F为PD中点
∴FGCD又∵AECD∴FGAE∴四边形AEFG是平行四边形
∴AF∥EG
又AF?平面PCEEG?平面PCE∴AF∥平面PCE
②∵PA⊥平面ABCD∴平面PAD⊥平面ABCD
∵CD⊥AD∴CD⊥平面PAD
∴CD⊥AF
∵PA=ADF为AD中点∴AF⊥PD∵PD∩CD=D∴AF⊥平面PCD
又∵EG∥AF∴EG⊥平面PCD
又∵EG?平面PCE∴平面PCE⊥平面PCD(8分)
③在平面PCD内作FH⊥PC,则FH⊥平面PCE
∴∠FCH是FC与平面PCE所成的角
在△FCH中,
∴直线FC与平面PCE所成角的正弦值为(12分)
点评:本题考查空间的点线面之间的位置关系和二面角的求法,解题的关键是画出二面角的平面角,把平面角放到一个可解的三角形中求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案