【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A.1800元
B.2400元
C.2800元
D.3100元
科目:高中数学 来源: 题型:
【题目】设f(x)=4cos(ωx﹣
)sinωx﹣cos(2ωx+π),其中ω>0.
(1)求函数y=f(x)的值域
(2)若f(x)在区间
上为增函数,求ω的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价
元与日销售量
件之间有如下关系:
x | 45 | 50 |
y | 27 | 12 |
(1)确定
与
的一个一次函数关系式
;
(2)若日销售利润为P元,根据(I)中关系写出P关于
的函数关系,并指出当销售单价为多少元时,才能获得最大的日销售利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是()
A. 锐角是第一象限的角,所以第一象限的角都是锐角;
B. 如果向量
,则
;
C. 在
中,记
,
,则向量
与
可以作为平面ABC内的一组基底;
D. 若
,
都是单位向量,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为
,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且
,
.
(1)求数列
的通项公式;
(2)已知
,记
(
且
),是否存在这样的常数
,使得数列
是常数列,若存在,求出
的值;若不存在,请说明理由;
(3)若数列
,对于任意的正整数
,均有
成立,求证:数列
是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直角坐标系
中,点
到抛物线
的准线的距离为
.点
是
上的定点,
,
是
上的两动点,且线段
的中点
在直线
上.
![]()
(Ⅰ)求曲线
的方程及
的值;
(Ⅱ)记
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
.
(1)求曲线
的普通方程与曲线
的直角坐标方程;
(2)曲线
与
相交于
两点,求过
两点且面积最小的圆的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com