函数
的最大值为6.求
最小值.
科目:高中数学 来源: 题型:解答题
欲修建一横断面为等腰梯形(如图1)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<90°)应为多大时,方能使修建成本最低?![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差数列.
(1)求实数m的值;
(2)若a、b、c是两两不相等的正数,且a、b、c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
是定义在
上的奇函数,当
时,有
(其中
为自然对数的底,
).
(1)求函数
的解析式;
(2)设
,
,求证:当
时,
;
(3)试问:是否存在实数
,使得当
时,
的最小值是3?如果存在,求出实数
的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨
元(
为正整数),每个月的销售利润为
元.(14分)
(1)求
与
的函数关系式并直接写出自变量
的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)某工厂有214名工人, 现要生产1500件产品, 每件产品由3个A型零件与1个B型零件配套组成, 每个工人加工5个A型零件与3个B型零件所需时间相同. 现将全部工人分为两组, 分别加工一种零件, 同时开始加工. 设加工A型零件的工人有x人, 在单位时间内每人加工A型零件5k个(k∈N*), 加工完A型零件所需时间为g(x), 加工完B型零件所需时间为h (x).
(Ⅰ) 试比较
与
大小, 并写出完成总任务的时间
的表达式;
(Ⅱ) 怎样分组才能使完成任务所需时间最少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com