【题目】在锐角
中,
,
,
分别为内角
,
,
所对的边,且满足
.
(Ⅰ)求角
的大小;
(Ⅱ)若
,
,求
的面积.
科目:高中数学 来源: 题型:
【题目】2018年6月14日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世界杯比赛,得到以下列联表:
观看世界杯 | 不观看世界杯 | 总计 | |
男 | 40 | 20 | 60 |
女 | 15 | 25 | 40 |
总计 | 55 | 45 | 100 |
经计算
的观测值
.
附表:
| 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参照附表,所得结论正确的是( )
A. 有
以上的把握认为“该小区居民是否观看世界杯与性别有关”
B. 有
以上的把握认为“该小区居民是否观看世界杯与性别无关”
C. 在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”
D. 在犯错误的概率不超过0.001的前提下,认为“该小区居民是否观看世界杯与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5
,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数f(x)=ax2+bx.
(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;
(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知六棱锥
的底面是正六边形,
平面
,
,给出下列结论:
![]()
①
;
②直线
平面
;
③平面
平面
;
④异面直线
与
所成角为
;
⑤直线
与平面
所成角的余弦值为
.
其中正确的有_______(把所有正确的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某个产品有若千零部件构成,加工时需要经过6道工序,分别记为
.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系.若加工工序
必须要在工序
完成后才能开工,则称
为
的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:
工序 |
|
|
|
|
|
|
加工时间 | 3 | 4 | 2 | 2 | 2 | 1 |
紧前工序 | 无 |
| 无 |
|
|
|
现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是__________小时.(假定每道工序只能安排在一台机器上,且不能间断).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心
为的圆,满足下列条件:圆心
位于
轴正半轴上,与直线
相切且被轴
截得的弦长为
,圆
的面积小于13.
(Ⅰ)求圆
的标准方程;
(Ⅱ)设过点
的直线
与圆
交于不同的两点
,以
为邻边作平行四边形
.是否存在这样的直线
,使得直线
与
恰好平行?如果存在,求出
的方程;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com