(本小题满分12)
为了绿化城市,准备在如图所示的区域
内修建一个矩形
的草坪,并建立如图平面直角坐标系,且
,
,另外
的内部有一文物保护区不能占用,经测量
,
,
,
.
(1)求直线
的方程;
(2)应如何设计才能使草坪的占地面积最大?并求最大面积。![]()
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对
x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2;
②若当x≥x1时,关于x的不等式ax2-x+xe
+1≤0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知函数![]()
,在同一周期内,
当
时,
取得最大值
;当
时,
取得最小值
.
(Ⅰ)求函数
的解析式;
(Ⅱ)求函数
的单调递减区间;
(Ⅲ)若
时,函数
有两个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知函数
(
为常数)。
(Ⅰ)函数
的图象在点(
)处的切线与函数
的图象相切,求实数
的值;
(Ⅱ)设
,若函数
在定义域上存在单调减区间,求实数
的取值范围;
(Ⅲ)若
,对于区间[1,2]内的任意两个不相等的实数
,
,都有
成立,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:若函数
对于其定义域内的某一数
,有
,则称
是
的一个不动点. 已知函数
.
(1)当
,
时,求函数
的不动点;
(2)若对任意的实数b,函数
恒有两个不动点,求实数
的取值范围;
(3)在(2)的条件下,若
图象上两个点A、B的横坐标是函数
的不动点,且线段AB的中点C在函数
的图象上,求实数b的最小值.
(参考公式:若
,则线段AB的中点坐标为
)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).某公司每月生产x台某种产品的收入为R(x)元,成本为C(x)元,且R(x)=3 000x-20x2,C(x)=500x+4 000(x∈N*).现已知该公司每月生产该产品不超过100台.
(1)求利润函数P(x)以及它的边际利润函数MP(x);
(2)求利润函数的最大值与边际利润函数的最大值之差.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
武汉市某地西瓜从2012年6月1日起开始上市。通过市场调查,得到西瓜种植成本Q(单位:元/
kg)与上市时间t(单位:天)的数据如下表:
| 时间t | 50 | 110 | 250 |
| 种植成本Q | 150 | 108 | 150 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com