【题目】如图,正方形
与梯形
所在的平面互相垂直,
,
,点
在线段
上.
![]()
(Ⅰ) 若点
为
的中点,求证:
平面
;
(Ⅱ) 求证:平面
平面
;
(Ⅲ) 当平面
与平面
所成二面角的余弦值为
时,求
的长.
【答案】(1)证明见解析;(2)证明见解析;(3)
.
【解析】
(1)建立空间直角坐标系,利用空间向量的结论可证得BM⊥平面ADEF的法向量,从而可证得线面平行;
(2)分别求得平面
,平面
的法向量,由法向量的数量积为0可证得面面垂直;
(3)设
,由题意可得点M的坐标,分别求得两个半平面的法向量,由二面角的余弦值得到关于
的方程,解方程求得
的值即可确定
的长.
(1)∵正方形ADEF与梯形ABCD所在的平面互相垂直,AD为交线,
∴ED⊥平面ABCD,由已知得DA,DE,DC两两垂直,
如图建系D-xyz,可得D(0,0,0),A(1,0,0),B(1,1,0),C(0,2,0),E(0,0,1),F(1,0,1).
由M为C的中点,知
,故
.
易知平面ADEF的法向量为
,
,
∵BM
平面ADEF,∴BM//平面ADEF.
![]()
(2)由(1)知
,
设平面BDE的法向量为
,
平面BEC的法向量为
,
由
得
,
由
得
,
,故平面BDE⊥平面BEC.
(3)设
,设
,计算可得
,
则
,
设平面BDM的法向量为
,
由
得
,
易知平面ABF的法向量为
,
由已知得
,
解得
,此时
,
,则
,即AM的长为
.
科目:高中数学 来源: 题型:
【题目】如图已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,且
,
.
![]()
(Ⅰ)求椭圆的方程:
(Ⅱ)设
为椭圆上异于
且不重合的两点,且
的平分线总是垂直于
轴,是否存在实数
,使得
,若存在,请求出
的最大值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在
).
![]()
(1)求居民收入在
的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在
的这段应抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,在点
处的切线方程为
.
(Ⅰ)求
的值;
(Ⅱ)已知
,当
时,
恒成立,求实数
的取值范围;
(Ⅲ)对于在
中的任意一个常数
,是否存在正数
,使得
,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知单调等比数列
,首项为
,其前
项和是
,且
,
,
成等差数列,数列
满足条件![]()
(1)求数列
、
的通项公式;
(2)设
,记数列
的前
项和是
.
①求
;
②求正整数
,使得对任意
,均有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市通过抽样调查的方法获得了100户居民某月用水量(单位:t)的频率分布直方图:
![]()
(Ⅰ)求这100户居民该月用水量的平均值;
(Ⅱ)从该月用水量在
和
两个区间的用户中,用分层抽样的方法邀请5户的户主共5人参加水价调整方案听证会,现从这5人中随机选取2人在会上进行陈述发言,求选取的2人均来自用水量低于2.5t的用户的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=asin2x+bcos2x(a,b∈R,ab≠0),若f(x)
对一切x∈R恒成立,给出以下结论:
①
;
②
;
③f(x)的单调递增区间是
;
④函数y=f(x)既不是奇函数也不是偶函数;
⑤存在经过点(a,b)的直线与函数f(x)的图象不相交,其中正确结论为_____
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,该作中有题为“李白沽酒”“李白街上走,提壶去买酒。遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?”,如图为该问题的程序框图,若输出的
值为0,则开始输入的
值为( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com