【题目】设
、
是两条不同的直线,
,
,
是三个不同的平面,给出下列四个命题:
①若
,
,则
②若
,
,
,则![]()
③若
,
,则
④若
,
,则![]()
其中正确命题的序号是( ).
A. ①和② B. ②和③ C. ③和④ D. ①和④
科目:高中数学 来源: 题型:
【题目】函数
.
(1)求函数
的最大值;
(2)对于任意
,且
,是否存在实数
,使
恒成立,若存在求出
的范围,若不存在,说明理由;
(3)若正项数列
满足
,且数列
的前
项和为
,试判断
与
的大小,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,底面ABCD为矩形,侧面PAD为正三角形,且平面
ABCD平面, E为PD中点, AD=2.![]()
(Ⅰ)求证:平面
平面PCD;
(Ⅱ)若二面角
的平面角大小
满足
,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知由实数组成的等比数列{an}的前项和为Sn , 且满足8a4=a7 , S7=254.
(1)求数列{an}的通项公式;
(2)对n∈N* , bn=
,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22成等比数列.
(1)求数列{an}的通项公式;
(2)设数列
的前n项和为Tn,求证:
≤Tn<
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,面
为正方形,面
为等腰梯形,
,
,
,
.
![]()
(I)求证:
平面
.
(II)求
与平面
所成角的正弦值.
(III)线段
上是否存在点
,使平面
平面
?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次“汉马”(武汉马拉松比赛的简称)全程比赛中,50名参赛选手(24名男选手和26名女选手)的成绩(单位:分钟)分别为数据
(成绩不为0).
(Ⅰ)24名男选手成绩的茎叶图如图⑴所示,若将男选手成绩由好到差编为1~24号,再用系统抽样方法从中抽取6人,求其中成绩在区间
上的选手人数;
![]()
(Ⅱ)如图⑵所示的程序用来对这50名选手的成绩进行统计.为了便于区别性别,输入时,男选手的成绩数据用正数,女选手的成绩数据用其相反数(负数),请完成图⑵中空白的判断框①处的填写,并说明输出数值
和
的统计意义.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是( )
![]()
A. 在(-2,1)上f(x)是增函数 B. 在(1,3)上f(x)是减函数
C. 当x=2时,f(x)取极大值 D. 当x=4时,f(x)取极大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的最小正周期与单调递减区间;
(2)若函数
的图象上的所有点的横坐标伸长到原来的
倍,所得的图象与直线
交点的横坐标由小到大依次是
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com