【题目】定义函数
,
(0,
)为
型函数,共中
.
(1)若
是
型函数,求函数
的值域;
(2)若
是
型函数,求函数
极值点个数;
(3)若
是
型函数,在
上有三点A、B、C横坐标分別为
、
、
,其中
<
<
,试判断直线AB的斜率与直线BC的斜率的大小并说明理由.
【答案】(1)
;(2)1个;(3)见解析.
【解析】
(1)先对函数求导求出其单调性,结合端点值求出值域;(2)先求导令导数等于0,求极值点个数只需判断导数零点的个数,化简整理后得
,将导数零点转化为两个函数的交点问题,利用图像观察求出交点个数;(3)先求导再进行二阶求导,利用二阶导数研究一阶导数的单调性与范围,再得出原函数的单调性,因为二阶导数小于0,所以函数是三凸的单调递减函数,结合函数图像很容易得出两直线斜率的关系.
解:(1)因为
,![]()
所以![]()
当
时,
,
单调递增
当
时,
,
单调递减
又因为
,
,![]()
所以函数
的值域为![]()
(2)因为
,![]()
所以
,
当
时,![]()
结合函数图像易知
与
在
上有且只有一个交点![]()
当
,时
,
,![]()
当
时,
,
,![]()
当
时,
,
,![]()
且当
时,![]()
当
时,
,函数
单调递增
当
时,
,函数
单调递减
所以函数
只有一个极大值点,极值点个数为1个
(3)因为
,![]()
所以![]()
所以![]()
所以
在
上单调递减,且
,所以![]()
构造函数
,![]()
则![]()
记
,![]()
则![]()
当
时,
,
单调递增
当
时,
,
单调递减
又因为
,所以
,所以![]()
所以
在
和
上单调递减
因为
<
<![]()
所以![]()
所以![]()
所以直线AB的斜率大于直线BC的斜率
科目:高中数学 来源: 题型:
【题目】若函数
在其图象上存在不同的两点
,
,其坐标满足条件:
的最大值为0,则称
为“柯西函数”,则下列函数:①
:②
:③
:④
.
其中为“柯西函数”的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,对于直线
和点
、
,记
,若
,则称点
,
被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点
,
被直线l分隔,则称直线l为曲线C的一条分隔线.
(1)求证:点
、
被直线
分隔;
(2)若直线
是曲线
的分隔线,求实数
的取值范围;
(3)动点M到点
的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为曲线E的分隔线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前用外卖网点餐的人越来越多.现对大众等餐所需时间情况进行随机调查,并将所得数据绘制成频率分布直方图(如图).其中等餐所需时间的范围是
,样本数据分组为
,
,
,
,
.
![]()
(1)求直方图中
的值;
(2)某同学在某外卖网点了一份披萨,试估计他等餐时间不多于
小时的概率;
(3)现有
名学生都分别通过外卖网进行了点餐,这
名学生中等餐所需时间少于
小时的人数记为
,求
的分布列和数学期望.(以直方图中的频率作为概率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
到点
的距离与点
到直线
的距离相等.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,过点
且斜率为1的直线与曲线
相交于不同的两点
,
,
为坐标原点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为
时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
经过点
,且点
到椭圆的两焦点的距离之和为
.
(l)求椭圆
的标准方程;
(2)若
是椭圆
上的两个点,线段
的中垂线
的斜率为
且直线
与
交于点
,
为坐标原点,求证:
三点共线.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,曲线
由部分椭圆
:
和部分抛物线
:
连接而成,
与
的公共点为
,
,其中
所在椭圆的离心率为
.
![]()
(Ⅰ)求
,
的值;
(Ⅱ)过点
的直线
与
,
分别交于点
,
(
,
,
,
中任意两点均不重合),若
,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com