【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求直线
和曲线
的普通方程;
(2)已知点
,且直线
和曲线
交于
两点,求
的值
科目:高中数学 来源: 题型:
【题目】近来天气变化无常,陡然升温、降温幅度大于
的天气现象出现增多.陡然降温幅度大于
容易引起幼儿伤风感冒疾病.为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的
名幼儿进行调查,得到了如下的列联表,若在全部
名幼儿中随机抽取
人,抽到患伤风感冒疾病的幼儿的概率为
,
(1)请将下面的列联表补充完整;
患伤风感冒疾病 | 不患伤风感冒疾病 | 合计 | |
男 | 25 | ||
女 | 20 | ||
合计 | 100 |
(2)能否在犯错误的概率不超过
的情况下认为患伤风感冒疾病与性别有关?说明你的理由;
(3)已知在患伤风感冒疾病的
名女性幼儿中,有
名又患黄痘病.现在从患伤风感冒疾病的
名女性中,选出
名进行其他方面的排查,记选出患黄痘病的女性人数为
,求
的分布列以及数学期望.下面的临界值表供参考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式:
,其中![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.从外观上看,是严丝合缝的十字立方体,其上下、左右、前后完全对称;六根等长的正四棱柱分成三组,经90°榫卯起来.如图所示,正四棱柱的高为8,底面正方形的边长为1,将这个鲁班锁放进一个球形容器内,则该球形容器半径的最小值为(容器壁的厚度忽略不计)( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定下列四个命题
若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
若一条直线和两个互相垂直的平面中的一个平面垂直,那么这条直线一定平行于另一个平面;
若一条直线和两个平行平面中的一个平面垂直,那么这条直线也和一个平面垂直;
若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直,
其中,真命题的个数是
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
过点
,其参数方程为
(
为参数,
).以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为![]()
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)已知曲线
与曲线
交于
,
两点,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某销售公司在当地
、
两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了
、
两家超市往年同期各50天的该食品销售记录,得到如下数据:
销售件数 | 8 | 9 | 10 | 11 |
频数 | 20 | 40 | 20 | 20 |
以这些数据的频数代替两家超市的食品销售件数的概率,记
表示这两家超市每日共销售食品件数,
表示销售公司每日共需购进食品的件数.
(1)求
的分布列;
(2)以销售食品利润的期望为决策依据,在
与
之中选其一,应选哪个?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com