【题目】如图,在四棱锥
中,底面ABCD为直角梯形,![]()
,
平面ABCD,E是棱PC上的一点.
![]()
(1)证明:平面
平面
.
(2)若
,F是PB的中点,
,
,求直线DF与平面
所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】如图,五边形
中,四边形
为长方形,
为边长为
的正三角形,将
沿
折起,使得点
在平面
上的射影恰好在
上.
![]()
(Ⅰ)当
时,证明:平面
平面
;
(Ⅱ)若
,求平面
与平面
所成二面角的余弦值的绝对值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抚州市某中学利用周末组织教职员工进行了一次秋季登军峰山健身的活动,有
人参加,现将所有参加人员按年龄情况分为
,
,
,
,
,
,
等七组,其频率分布直方图如下图所示.已知
之间的参加者有4人.
![]()
(1)求
和
之间的参加者人数
;
(2)组织者从
之间的参加者(其中共有
名女教师包括甲女,其余全为男教师)中随机选取
名担任后勤保障工作,求在甲女必须入选的条件下,选出的女教师的人数为2人的概率.
(3)已知
和
之间各有
名数学教师,现从这两个组中各选取
人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有
名数学教师的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体AC1中,E,F分别为D1C1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,如图.
![]()
(1)若A1C交平面EFBD于点R,证明:P,Q,R三点共线.
(2)线段AC上是否存在点M,使得平面B1D1M∥平面EFBD,若存在确定M的位置,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
两点分别在
轴和
轴上运动,且
,若动点
满足
.
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线
与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
, (
为参数,
为倾斜角).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的直角坐标方程为
.
(Ⅰ)将曲线
的直角坐标方程化为极坐标方程;
(Ⅱ)设点
的直角坐标为
,直线
与曲线
的交点为
、
,求
的取值范围.
【答案】(I)
;(II)
.
【解析】试题分析:(Ⅰ)将由
代入
,化简即可得到曲线
的极坐标方程;(Ⅱ)将
的参数方程
代入
,得
,根据直线参数方程的几何意义,利用韦达定理结合辅助角公式,由三角函数的有界性可得结果.
试题解析:(Ⅰ)由
及
,得
,即![]()
所以曲线
的极坐标方程为![]()
(II)将
的参数方程
代入
,得![]()
∴
, 所以
,又
,
所以
,且
,
所以
,
由
,得
,所以
.
故
的取值范围是
.
【题型】解答题
【结束】
23
【题目】已知
、
、
均为正实数.
(Ⅰ)若
,求证: ![]()
(Ⅱ)若
,求证: ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com