【题目】已知椭圆的中心在原点,焦点在
轴上,离心率为
,且经过点
,直线
:
交椭圆于
,
两不同的点.
(1)求椭圆的方程;
(2)若直线
不过点
,求证:直线
,
与
轴围成等腰三角形.![]()
【答案】
(1)解:设椭圆方程为
,因为
,所以
,
又椭圆过点
,所以
,解得
,
,故椭圆的方程为 ![]()
(2)解:将
代入
并整理得
,
再根据
,求得
.
设直线
,
斜率分别为
和
,只要证
即可.
设
,
,则
,
,
∴ ![]()
而此分式的分子等于 ![]()
![]()
可得 ![]()
因此
,
与
轴所围成的三角形为等腰三角形.
【解析】(1)根据椭圆离心率公式e=
及a2=b2+c2得到a,b的关系式,将点的坐标代入椭圆方程,两方程联立求出a2,b2即可;(2)联立直线方程和椭圆方程,消去y,利用二次方程根与系数关系写出点A和点B横坐标满足的关系式,将kMA+kMB用 点A和点B横坐标,只要证出kMA+kMB=0即可.
科目:高中数学 来源: 题型:
【题目】某飞机失联,经卫星侦查,其最后出现在小岛
附近,现派出四艘搜救船
,为方便联络,船
始终在以小岛
为圆心,100海里为半径的圆上,船
构成正方形编队展开搜索,小岛
在正方形编队外(如图).设小岛
到
的距离为
,
,
船到小岛
的距离为
.
(1)请分别求
关于
的函数关系式
,并分别写出定义域;
(2)当
两艘船之间的距离是多少时搜救范围最大(即
最大)?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的
,
,
,
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是
或
作品获得一等奖”;
乙说:“
作品获得一等奖”;
丙说:“
,
两项作品未获得一等奖”;
丁说:“是
作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的个数为( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分条件;
③命题“若m≤
,则方程mx2+2x+2=0有实数根”的否命题为真命题.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设双曲线
(a>0,b>0)的左焦点为F1 , 左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+
,则该双曲线的离心率取值范围是( )
A.(1﹣
)
B.(
,+∞)
C.(1,2
)
D.(2
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn , 数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3 .
(1)求数列{an}和{bn}的通项公式;
(2)令cn=anbn , 设数列{cn}的前n项和为Tn , 求Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的离心率为
,F1、F2分别是椭圆的左、右焦点,M为椭圆上除长轴端点外的任意一点,且△MF1F2的周长为4+2
.
(1)求椭圆C的方程;
(2)过点D(0,﹣2)作直线l与椭圆C交于A、B两点,点N满足
(O为原点),求四边形OANB面积的最大值,并求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(
,
),则sinx0的值为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为实常数).
(1)若
,
,求
的单调区间;
(2)若
,且
,求函数
在
上的最小值及相应的
值;
(3)设
,若存在
,使得
成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com