精英家教网 > 高中数学 > 题目详情

【题目】20175月,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购.乘坐高铁可以网络购票,为了研究网络购票人群的年龄分布情况,在531日重庆到成都高铁9600名网络购票的乘客中随机抽取了120人进行了统计并记录,按年龄段将数据分成6组:,得到如图所示的直方图:

1)若从总体的9600名网络购票乘客中随机抽取一人,估计其年龄大于35岁的概率;

2)试估计总体中年龄在区间内的人数;

3)试通过直方图,估计531日当天网络购票的9600名乘客年龄的中位数.

【答案】10.4;(2480人;(332.5.

【解析】

1)由频率分布直方图,求出年龄大于35的频率:,即可求解.

2)求出区间的概率,进而利用总人数以及在此区间内的概率即可求解.

3)由直方图可知,设中位数为x,由题可得,求解即可.

1)由频率分布直方图知:年龄大于35的频率为:

故从总体的9600名网购票乘客中随机抽取一人,估计其年龄大于35岁的概率为0.4

2)设在区间内的概率为,则

解得,估计总体中年龄在区间内的人数为.

3)由直方图可知:中位数在区间内,设中位数为x.

由题可得:,所以531日当天网络购票的9600名乘客年龄的中位数大约为32.5.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,四边形为菱形,且的中点.

(1)求证:平面

(2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,对于点,定义变换:将点变换为点,使得其中.这样变换就将坐标系内的曲线变换为坐标系内的曲线.则四个函数,,,在坐标系内的图象,变换为坐标系内的四条曲线(如图)依次是

A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的左右顶点分别为,,为坐标原点,且.

(1)求椭圆的标准方程;

(2)若点为直线在第一象限内的一点,连接交椭圆于点,连接并延长交椭圆于点.若直线的斜率为1,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线:上的点到焦点的距离最小值为1.

(1)求的值;

(2)若点在曲线:上,且在曲线上存在三点,,,使得四边形为平行四边形.求平行四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求函数的所有零点;

(2),证明函数不存在极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查生活规律与患胃病是否与有关,某同学在当地随机调查了20030岁以上的人,并根据调查结果制成了不完整的列联表如下:

不患胃病

患胃病

总计

生活有规律

60

40

生活无规律

60

100

总计

100

(1)补全列联表中的数据;

(2)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?

参考公式和数表如下:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

/p>

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当 时,函数 的图象与轴交于两点 ,且 ,又的导函数.若正常数 满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)ax(ab∈Z),曲线yf(x)在点(2f(2))处的切线方

程为y3.

(1)f(x)的解析式;

(2)证明:曲线yf(x)上任一点的切线与直线x1和直线yx所围三角形的面积为定值,

并求出此定值.

查看答案和解析>>

同步练习册答案