【题目】如图,三棱柱
,
平面
,
,
,
为
的中点。
![]()
(1)求证:
平面
;
(2)若
,求二面角
的余弦值;
(3)若点
在线段
上,且
平面
,确定点
的位置并求线段
的长。
【答案】(1)见解析;(2)
;(3)见解析
【解析】
(1)连接
,交
于点
,点
为
的中点,
为
的中点,求得
∥
,利用线面平行的判定定理,即可得到
∥平面
.
(2)以
为原点,分别以
的方向为
轴、
轴、
轴的正方向建立空间直角坐标系,求得平面
H和平面
的法向量,利用向量的夹角公式,即可求解.
(3)设
,根据
平面
,列出方程组,即可求解.
(1)连接
,交
于点
,则点
为
的中点,
因为
为
的中点,所以
∥
.
又
平面
,
平面
,
所以
∥平面
.
(2)因为
平面
,
∥
,
所以
平面
,又![]()
故以
为原点,分别以
的方向为
轴、
轴、
轴的正方向
建立空间直角坐标系,
则
,
所以
设平面
的法向量为
,
则有
即
令
,则得
.
又平面
的法向量为
,且二面角
为锐角,
故二面角
的余弦值为
(3)设
因为
,所以
,
.
又
,
,平面
,
所以
解得![]()
所以
,且点
在线段
的三等分点处,即![]()
科目:高中数学 来源: 题型:
【题目】下列有关线性回归分析的四个命题:
①线性回归直线必过样本数据的中心点(
);
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数
时,两个变量正相关;
④如果两个变量的相关性越强,则相关性系数
就越接近于
.
其中真命题的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前56项和为( )
![]()
A.2060B.2038C.4084D.4108
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系
的极坐标方程为
,直线l的参数方程为
,(其中
为参数)直线l与
交于A,B两个不同的点.
求倾斜角
的取值范围;
求线段AB中点P的轨迹的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调查.经统计这100位居民的网购消费金额均在区间
内,按
分成6组,其频率分布直方图如图所示.
![]()
(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的
列联表,并判断有多大把握认为“网购迷与性别有关系”
男 | 女 | 总计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
总计 | 100 |
附:
.
临界值表:
| 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数),
是
的导函数.
(Ⅰ)当
时,求证
;
(Ⅱ)是否存在正整数
,使得
对一切
恒成立?若存在,求出
的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,短轴长为4.
(1)求椭圆
的方程;
(2)过点
作两条直线,分别交椭圆
于
两点(异于
),当直线
,
的斜率之和为4时,直线
恒过定点,求出定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com