【题目】已知数列
满足
,且点
在函数
的图象上.
(1)求数列
的通项公式;
(2)设
,求数列
的前
项和
.
科目:高中数学 来源: 题型:
【题目】在一次“知识竞赛”活动中,有
四道题,其中
为难度相同的容易题,
为中档题,
为较难题,现甲、乙两位同学均需从四道题目中随机抽取一题作答.
(1)求甲、乙两位同学所选的题目难度相同的概率;
(2)求甲所选题目的难度大于乙所选题目的难度的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
分别是直线
和
上的两个动点,线段
的长为
,
是
的中点.
(1)求动点
的轨迹
的方程;
(2)若过点(1,0)的直线
与曲线
交于不同两点
.
①当
时,求直线
的方程;
②试问在
轴上是否存在点
,使
恒为定值?若存在,求出
点的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,
,动点
满足
(
且
).
(1)求动点
的轨迹方程,并说明轨迹是什么曲线;
(2)若
,点
为动点
的轨迹曲线上的任意一点,过点
作圆:
的切线,切点为
.试探究平面内是否存在定点
,使
为定值,若存在,请求出点
的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时,若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数
与骑兵个数
表示每天的利润
(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,PA垂直于矩形ABCD所在的平面,E、F分别是AB、PD的中点,∠ADP=45°.
(1)求证:AF∥平面PCE.
(2)求证:平面PCD⊥平面PCE.
(3)若AD=2,CD=3,求点F到平面PCE的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com