【题目】已知函数
.
(1)若函数
在
上是减函数,求实数
的取值范围;
(2)令
,是否存在实数
,当
(
是自然常数)时,函数
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(3)当
时,证明:
.
【答案】(1)
;(2)存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3;(3)详见解析.
【解析】
试题分析:(1)首先将问题转化为
在[1,2]上恒成立,然后将其转化为二次函数的图像及其性质即可得出所求的结果;(2)首先假设存在实数a,使g(x)=ax﹣lnx(x∈(0,e])有最小值3,并求出其导函数,然后对其进行分类讨论:①当a≤0时;②当
时;③当
时,分别利用导数研究函数的单调性并求出其最值即可得出所求的结果;(3)首先令F(x)=e2x﹣lnx,由(2)知,F(x)min,然后令
,并求出其导函数,进而得出其最大值,最后得出不等式成立.
试题解析:(1)
在[1,2]上恒成立,
令h(x)=2x2+ax﹣1,有
得
,得
.
(2)假设存在实数a,使g(x)=ax﹣lnx(x∈(0,e])有最小值3,
①当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae﹣1=3,
(舍去),
②当
时,g(x)在
上单调递减,在
上单调递增
∴
,a=e2,满足条件.
③当
时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae﹣1=3,
(舍去),
综上,存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3.
(3)令F(x)=e2x﹣lnx,由(2)知,F(x)min=3.令
,
,
当0<x≤e时,'(x)≥0,φ(x)在(0,e]上单调递增∴![]()
∴
,即
.
科目:高中数学 来源: 题型:
【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。该公司第n年需要付出设备的维修和工人工资等费用
的信息如下图。
![]()
(Ⅰ)求
;
(Ⅱ)引进这种设备后,第几年后该公司开始获利;
(Ⅲ)这种设备使用多少年,该公司的年平均获利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
的方程:![]()
(1)求m的取值范围;
(2)若圆C与直线
相交于
,
两点,且
,求
的值
(3)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的左、右焦点分别是
,下顶点为
,线段
的中点为
(
为坐标原点),如图,若抛物线
与
轴的交点为
,且经过
点.
![]()
(1)求椭圆
的方程;
(2)设
,
为抛物线
上的一动点,过点
作抛物线
的切线交椭圆
于点
、
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂经过市场调查,甲产品的日销售量
(单位:吨)与销售价格
(单位:万元/吨)满足关系式
(其中
为常数),已知销售价格为
万元/吨时,每天可售出该产品
吨.
(1)求
的值;
(2)若该产品的成本价格为
万元/吨,当销售价格为多少时,该产品每天的利润最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平面
平面
,四边形
是正方形,四边形
是菱形,且
,
,点
、
分别为边
、
的中点,点
是线段
上的动点.
![]()
(1)求证:![]()
;
(2)求三棱锥
的体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若方程
有两个小于2的不等实根,求实数a的取值范围;
(2)若不等式
对任意
恒成立,求实数a的取值范围;
(3)若函数
在[0,2]上的最大值为4,求实数a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com