【题目】已知函数
是连续的偶函数,且
时,
是单调函数,则满足
的所有
之积为( )
A.
B.
C.
D. ![]()
【答案】D
【解析】
由y=f(x+2)为偶函数分析可得f(x)关于直线x=2对称,进而分析可得函数f(x)在(2,+∞)和(﹣∞,2)上都是单调函数,据此可得若f(x)=f(1
),则有x=1
或4﹣x=1
,变形为二次方程,结合根与系数的关系分析可得满足f(x)=f(1
)的所有x之积,即可得答案.
根据题意,函数y=f(x+2)为偶函数,则函数f(x)关于直线x=2对称,
又由当x>2时,函数y=f(x)是单调函数,则其在(﹣∞,2)上也是单调函数,
若f(x)=f(1
),则有x=1
或4﹣x=1
,
当x=1
时,变形可得x2+3x﹣3=0,有2个根,且两根之积为﹣3,
当4﹣x=1
时,变形可得x2+x﹣13=0,有2个根,且两根之积为﹣13,
则满足f(x)=f(1
)的所有x之积为(﹣3)×(﹣13)=39;
故选:D.
科目:高中数学 来源: 题型:
【题目】某工厂生产某种型号的农机具零配件,为了预测今年7月份该型号农机具零配件的市场需求量,以合理安排生产,工厂对本年度1月份至6月份该型号农机具零配件的销售量及销售单价进行了调查,销售单价
(单位:元)和销售量
(单位:千件)之间的6组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售单价 | 11.1 | 9.1 | 9.4 | 10.2 | 8.8 | 11.4 |
销售量 | 2.5 | 3.1 | 3 | 2.8 | 3.2 | 2.4 |
(1)根据1至6月份的数据,求
关于
的线性回归方程(系数精确到0.01);
(2)结合(1)中的线性回归方程,假设该型号农机具零配件的生产成本为每件3元,那么工厂如何制定7月份的销售单价,才能使该月利润达到最大?(计算结果精确到0.1)
参考公式:回归直线方程
,![]()
参考数据:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,
是边长
,
的矩形硬纸片,在硬纸片的四角切去边长相等的小正方形后,再沿虚线折起,做成一个无盖的长方体盒子,
、
是
上被切去的小正方形的两个顶点,设
.
![]()
![]()
(1)将长方体盒子体积
表示成
的函数关系式,并求其定义域;
(2)当
为何值时,此长方体盒子体积
最大?并求出最大体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为支援武汉的防疫,某医院职工踊跃报名,其中报名的医生18人,护士12人,医技6人,根据需要,从中抽取一个容量为n的样本参加救援队,若采用系统抽样和分层抽样,均不用剔除人员.当抽取n+1人时,若采用系统抽样,则需剔除1个报名人员,则抽取的救援人员为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为
和
,现安排甲组研发新产品
,乙组研发新产品
.设甲,乙两组的研发是相互独立的.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品
研发成功,预计企业可获得
万元,若新产品
研发成功,预计企业可获得利润
万元,求该企业可获得利润的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布
.
(1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;
(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入
(千元)与年收益增量
(千元).
的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线
的附近,且![]()
![]()
![]()
![]()
,![]()
,其中![]()
.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.
附:若随机变量
,则![]()
;
对于一组数据![]()
![]()
![]()
,其回归线
的斜率和截距的最小二乘估计分别为![]()
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生
到
之间取整数值的随机数,分别用
,
,
,
代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下
组随机数:
![]()
由此可以估计,恰好第三次就停止摸球的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
为常数.
(Ⅰ)若
的图像在
处的切线经过点(3,4),求
的值;
(Ⅱ)若
,求证:
;
(Ⅲ)当函数
存在三个不同的零点时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.
(1)求抛物线方程;
(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com