精英家教网 > 高中数学 > 题目详情
函数f(x)=x3-kx,其中实数k为常数.
(I) 当k=4时,求函数的单调区间;
(II) 若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.
【答案】分析:(I)先求原函数的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可;
(II)将题中条件:“函数f(x)的图象与直线y=k只有一个公共点,”等价于“g(x)=f(x)-k,所以g(x)只有一个零点”,利用导数求得原函数的极值,最后要使g(x)的其图象和x轴只有一个交点,得到关于k的不等关系,从而求实数k的取值范围.
解答:解:(I)因为f′(x)=x2-k…(2分)
当k=4时,f′(x)=x2-4,令f′(x)=x2-4=0,所以x=-2或x=2
f′(x),f(x)随x的变化情况如下表:
x(-∞,-2)-2(-2,2)2(2,+∞)
f′(x)+-+
f(x)极大值极小值
…(4分)
所以f(x)的单调递增区间是(-∞,-2),(2,+∞)
单调递减区间是(-2,2)…(6分)
(II)令g(x)=f(x)-k,所以g(x)只有一个零点…(7分)
因为g′(x)=f′(x)=x2-k
当k=0时,g(x)=x3,所以g(x)只有一个零点0                …(8分)
当k<0时,g′(x)=x2-k>0对x∈R成立,
所以g(x)单调递增,所以g(x)只有一个零点…(9分)
当k>0时,令g′(x)=f′(x)=x2-k
=0,解得x=或x=-…(10分)
所以情况如下表:
x(-∞,--(-,+∞)
g′(x)+-+
g(x)极大值极小值
g(x)有且仅有一个零点等价于g(-)<0…(11分)
即g(-)=k<0,解得0<k<…(12分) 
综上所述,k的取值范围是k<…(13分)
点评:本小题主要考查函数单调性的应用、利用导数研究函数的单调性、导数在极值问题中的应用、不等式的解法等基础知识,考查运算求解能力,转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3+ax2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是(  )

查看答案和解析>>

同步练习册答案