【题目】选修4-4:坐标系与参数方程
以平面直角坐标系
的原点为极点,
轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线
的参数方程为
(
为参数),圆
的极坐标方程为
.
(1)求直线
的普通方程与圆
的直角坐标方程;
(2)设曲线
与直线
交于
两点,若
点的直角坐标为
,求
的值.
科目:高中数学 来源: 题型:
【题目】记
为数列
的前
项和.“任意正整数
,均有
”是“
为递增数列”的
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】德国数学家科拉茨
年提出了一个著名的猜想:任给一个正整数
,如果
是偶数,就将它减半(即
);如果
是奇数,则将它乘
加
(即
),不断重复这样的运算,经过有限步后,一定可以得到
.对于科拉茨猜想,目前谁也不能证明,也不能否定.现在请你研究:如果对正整数
(首项)按照上述规则施行变换后的第
项为
(注:
可以多次出现),则
的所有不同值的个数为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推行“新课堂”教学法,某老师分别用传统教学和“新课堂”两种不同的教学方式在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,若成绩大于70分为“成绩优良”.
(1)由统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
![]()
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
(2)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,求抽取的2人中恰有一人来自乙班的概率.
|
|
|
|
|
|
|
|
|
|
附:
,(
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,下列结论中错误的是
A.
, f(
)=0
B. 函数y=f(x)的图像是中心对称图形
C. 若
是f(x)的极小值点,则f(x)在区间(-∞,
)单调递减
D. 若
是f(x)的极值点,则
(
)=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,以原点
为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求圆
的直角坐标方程;
(2)设
,直线
的参数方程是
(
为参数),已知
与圆
交于
两点,且
,求
的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】德国数学家科拉茨
年提出了一个著名的猜想:任给一个正整数
,如果
是偶数,就将它减半(即
);如果
是奇数,则将它乘
加
(即
),不断重复这样的运算,经过有限步后,一定可以得到
.对于科拉茨猜想,目前谁也不能证明,也不能否定.现在请你研究:如果对正整数
(首项)按照上述规则施行变换后的第
项为
(注:
可以多次出现),则
的所有不同值的个数为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com