·ÖÎö £¨1£©ÓÉÒÑÖªÊýÁеÝÍÆÊ½¿ÉµÃ$4{S}_{n-1}={{a}_{n}}^{2}-4£¨n-1£©-1$£¨n¡Ý2£©£¬ÓëÔµÝÍÆÊ½×÷²îºóÅä·½¿ÉµÃ${{a}_{n+1}}^{2}={{a}_{n}}^{2}+4{a}_{n}+4=£¨{a}_{n}+2£©^{2}$£¬¿ª·½µÃµ½an+1=an+2£¨n¡Ý2£©£®ÔÙÇóµÃa2=3£¬¼´¿ÉÖ¤Ã÷ÊýÁÐ{an}ÊǵȲîÊýÁУ¬²¢ÇóÆäͨÏʽ£»
£¨2£©ÉèµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¨q£¾1£©£¬ÓÉÌâÒâÁÐʽÇóµÃÊ×ÏîºÍ¹«±È£¬µÃµ½µÈ±ÈÊýÁеÄͨÏʽ£¬´úÈë$c_n^{\;}=\frac{a_n}{{3{b_n}}}=\frac{2n-1}{3^n}$£®ÀûÓôíÎóÏà¼õ·¨ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£»
£¨3£©ÀûÓÃ×÷²î·¨¿ÉµÃÊýÁÐ{cn}µ¥µ÷µÝ¼õ£¬¼´ÓÐ×î´óֵΪ${c_1}=\frac{1}{3}$£¬°Ñ${c_n}¡Ü{t^2}+\frac{4}{3}t-2$¶ÔÒ»ÇÐÕýÕûÊýnºã³ÉÁ¢£¬×ª»¯Îª$\frac{1}{3}¡Ü{t^2}+\frac{4}{3}t-2$£¬Çó½â²»µÈʽµÃ´ð°¸£®
½â´ð Ö¤Ã÷£º£¨1£©µ±n¡Ý2ʱ£¬$4{S}_{n-1}={{a}_{n}}^{2}-4£¨n-1£©-1$£¬
¡à$4{a}_{n}=4{S}_{n}-4{S}_{n-1}={{a}_{n+1}}^{2}-{{a}_{n}}^{2}-4$£¬
Ôò${{a}_{n+1}}^{2}={{a}_{n}}^{2}+4{a}_{n}+4=£¨{a}_{n}+2£©^{2}$£¬
¡ßan£¾0£¬¡àan+1=an+2£¨n¡Ý2£©£®
ÓÖa1=1£¬4a1=${{a}_{2}}^{2}-5$£¬µÃa2=3£¬
Ôò{an}ÊÇÊ×Ïîa1=1£¬¹«²îd=2µÄµÈ²îÊýÁУ¬
ÔòÊýÁÐ{an}ͨÏʽΪan=2n-1£»
½â£º£¨2£©ÓÉ£¨1£©µÃÊýÁÐ{an}ͨÏʽΪan=2n-1£®
ÉèµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¨q£¾1£©£¬
ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{{b}_{1}q=3}\\{{b}_{1}+{b}_{1}{q}^{2}=10}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{b}_{1}=1}\\{q=3}\end{array}\right.$£®
¡à${b_n}={3^{n-1}}$£¬Ôò$c_n^{\;}=\frac{a_n}{{3{b_n}}}=\frac{2n-1}{3^n}$£®
ÔòǰnÏîºÍ${T}_{n}=1•\frac{1}{3}+3•£¨\frac{1}{3}£©^{2}+5•£¨\frac{1}{3}£©^{3}+¡+£¨2n-1£©•£¨\frac{1}{3}£©^{n}$£®
$\frac{1}{3}{T}_{n}=1•£¨\frac{1}{3}£©^{2}+3•£¨\frac{1}{3}£©^{3}+5•£¨\frac{1}{3}£©^{4}+¡+£¨2n-1£©•£¨\frac{1}{3}£©^{n+1}$£®
Ïà¼õ¿ÉµÃ$\frac{2}{3}{T}_{n}=\frac{1}{3}+2[£¨\frac{1}{3}£©^{2}+£¨\frac{1}{3}£©^{3}+¡+£¨\frac{1}{3}£©^{n}]-£¨2n-1£©•£¨\frac{1}{3}£©^{n+1}$
=$\frac{1}{3}+2•\frac{\frac{1}{9}£¨1-\frac{1}{{3}^{n-1}}£©}{1-\frac{1}{3}}-£¨2n-1£©•£¨\frac{1}{3}£©^{n+1}$£®
¡à${T}_{n}=1-£¨n+1£©•£¨\frac{1}{3}£©^{n}$£»
½â£º£¨3£©${c_n}¡Ü{t^2}+\frac{4}{3}t-2$¶ÔÒ»ÇÐÕýÕûÊýnºã³ÉÁ¢£¬
ÓÉcn+1-cn=$£¨2n+1£©•£¨\frac{1}{3}£©^{n+1}-£¨2n-1£©•£¨\frac{1}{3}£©^{n}$=$\frac{4}{3}£¨1-n£©•£¨\frac{1}{3}£©^{n}¡Ü0$£¬
¿ÉµÃÊýÁÐ{cn}µ¥µ÷µÝ¼õ£¬¼´ÓÐ×î´óֵΪ${c_1}=\frac{1}{3}$£¬
Ôò$\frac{1}{3}¡Ü{t^2}+\frac{4}{3}t-2$£¬½âµÃt¡Ý1»ò$t¡Ü-\frac{7}{3}$£®
¼´ÊµÊýtµÄȡֵ·¶Î§Îª$£¨-¡Þ£¬-\frac{7}{3}]¡È[1£¬+¡Þ£©$£®
µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éÁËµÈ²î¹ØÏµµÄÈ·¶¨£¬ÑµÁ·ÁË´íλÏà¼õ·¨ÇóÊýÁеÄǰnÏîºÍ£¬¿¼²éÊýÁеĺ¯ÊýÌØÐÔ£¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{5}{4}$ | B£® | $\frac{4}{3}$ | C£® | $\frac{3}{2}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $a¡Ü-\frac{1}{4}$ | B£® | a¡Ü0 | C£® | $a¡Ü\frac{1}{4}$ | D£® | a¡Ü2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¡À2 | B£® | -2 | C£® | 2 | D£® | 0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 2$\sqrt{2}$ | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com