11£®Éè¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Âú×ã4Sn=a${\;}_{n+1}^{2}$-4n-1£¬ÇÒa1=1£¬¹«±È´óÓÚ1µÄµÈ±ÈÊýÁÐ{bn}Âú×ãb2=3£¬b1+b3=10£®
£¨1£©ÇóÖ¤ÊýÁÐ{an}ÊǵȲîÊýÁУ¬²¢ÇóÆäͨÏʽ£»
£¨2£©Èôcn=$\frac{a_n}{{3{b_n}}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èôcn¡Üt2+$\frac{4}{3}$t-2¶ÔÒ»ÇÐÕýÕûÊýnºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÒÑÖªÊýÁеÝÍÆÊ½¿ÉµÃ$4{S}_{n-1}={{a}_{n}}^{2}-4£¨n-1£©-1$£¨n¡Ý2£©£¬ÓëÔ­µÝÍÆÊ½×÷²îºóÅä·½¿ÉµÃ${{a}_{n+1}}^{2}={{a}_{n}}^{2}+4{a}_{n}+4=£¨{a}_{n}+2£©^{2}$£¬¿ª·½µÃµ½an+1=an+2£¨n¡Ý2£©£®ÔÙÇóµÃa2=3£¬¼´¿ÉÖ¤Ã÷ÊýÁÐ{an}ÊǵȲîÊýÁУ¬²¢ÇóÆäͨÏʽ£»
£¨2£©ÉèµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¨q£¾1£©£¬ÓÉÌâÒâÁÐʽÇóµÃÊ×ÏîºÍ¹«±È£¬µÃµ½µÈ±ÈÊýÁеÄͨÏʽ£¬´úÈë$c_n^{\;}=\frac{a_n}{{3{b_n}}}=\frac{2n-1}{3^n}$£®ÀûÓôíÎóÏà¼õ·¨ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£»
£¨3£©ÀûÓÃ×÷²î·¨¿ÉµÃÊýÁÐ{cn}µ¥µ÷µÝ¼õ£¬¼´ÓÐ×î´óֵΪ${c_1}=\frac{1}{3}$£¬°Ñ${c_n}¡Ü{t^2}+\frac{4}{3}t-2$¶ÔÒ»ÇÐÕýÕûÊýnºã³ÉÁ¢£¬×ª»¯Îª$\frac{1}{3}¡Ü{t^2}+\frac{4}{3}t-2$£¬Çó½â²»µÈʽµÃ´ð°¸£®

½â´ð Ö¤Ã÷£º£¨1£©µ±n¡Ý2ʱ£¬$4{S}_{n-1}={{a}_{n}}^{2}-4£¨n-1£©-1$£¬
¡à$4{a}_{n}=4{S}_{n}-4{S}_{n-1}={{a}_{n+1}}^{2}-{{a}_{n}}^{2}-4$£¬
Ôò${{a}_{n+1}}^{2}={{a}_{n}}^{2}+4{a}_{n}+4=£¨{a}_{n}+2£©^{2}$£¬
¡ßan£¾0£¬¡àan+1=an+2£¨n¡Ý2£©£®
ÓÖa1=1£¬4a1=${{a}_{2}}^{2}-5$£¬µÃa2=3£¬
Ôò{an}ÊÇÊ×Ïîa1=1£¬¹«²îd=2µÄµÈ²îÊýÁУ¬
ÔòÊýÁÐ{an}ͨÏʽΪan=2n-1£»
½â£º£¨2£©ÓÉ£¨1£©µÃÊýÁÐ{an}ͨÏʽΪan=2n-1£®
ÉèµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¨q£¾1£©£¬
ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{{b}_{1}q=3}\\{{b}_{1}+{b}_{1}{q}^{2}=10}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{b}_{1}=1}\\{q=3}\end{array}\right.$£®
¡à${b_n}={3^{n-1}}$£¬Ôò$c_n^{\;}=\frac{a_n}{{3{b_n}}}=\frac{2n-1}{3^n}$£®
ÔòǰnÏîºÍ${T}_{n}=1•\frac{1}{3}+3•£¨\frac{1}{3}£©^{2}+5•£¨\frac{1}{3}£©^{3}+¡­+£¨2n-1£©•£¨\frac{1}{3}£©^{n}$£®
$\frac{1}{3}{T}_{n}=1•£¨\frac{1}{3}£©^{2}+3•£¨\frac{1}{3}£©^{3}+5•£¨\frac{1}{3}£©^{4}+¡­+£¨2n-1£©•£¨\frac{1}{3}£©^{n+1}$£®
Ïà¼õ¿ÉµÃ$\frac{2}{3}{T}_{n}=\frac{1}{3}+2[£¨\frac{1}{3}£©^{2}+£¨\frac{1}{3}£©^{3}+¡­+£¨\frac{1}{3}£©^{n}]-£¨2n-1£©•£¨\frac{1}{3}£©^{n+1}$
=$\frac{1}{3}+2•\frac{\frac{1}{9}£¨1-\frac{1}{{3}^{n-1}}£©}{1-\frac{1}{3}}-£¨2n-1£©•£¨\frac{1}{3}£©^{n+1}$£®
¡à${T}_{n}=1-£¨n+1£©•£¨\frac{1}{3}£©^{n}$£»
½â£º£¨3£©${c_n}¡Ü{t^2}+\frac{4}{3}t-2$¶ÔÒ»ÇÐÕýÕûÊýnºã³ÉÁ¢£¬
ÓÉcn+1-cn=$£¨2n+1£©•£¨\frac{1}{3}£©^{n+1}-£¨2n-1£©•£¨\frac{1}{3}£©^{n}$=$\frac{4}{3}£¨1-n£©•£¨\frac{1}{3}£©^{n}¡Ü0$£¬
¿ÉµÃÊýÁÐ{cn}µ¥µ÷µÝ¼õ£¬¼´ÓÐ×î´óֵΪ${c_1}=\frac{1}{3}$£¬
Ôò$\frac{1}{3}¡Ü{t^2}+\frac{4}{3}t-2$£¬½âµÃt¡Ý1»ò$t¡Ü-\frac{7}{3}$£®
¼´ÊµÊýtµÄȡֵ·¶Î§Îª$£¨-¡Þ£¬-\frac{7}{3}]¡È[1£¬+¡Þ£©$£®

µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éÁËµÈ²î¹ØÏµµÄÈ·¶¨£¬ÑµÁ·ÁË´íλÏà¼õ·¨ÇóÊýÁеÄǰnÏîºÍ£¬¿¼²éÊýÁеĺ¯ÊýÌØÐÔ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔڵȲîÊýÁÐ{an}ÖУ¬ÒÑÖªa1+a6=12£¬a4=7
£¨1£©Çóa9£»
£¨2£©Çó{an}ǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Ô²x2+y2-2x+10y-24=0ÓëÔ²x2+y2+2x+2y-8=0µÄ¹«¹²ÏÒËùÔÚµÄÖ±Ïß·½³ÌΪx-2y+4=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÉèË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÒÔF1ΪԲÐÄ£¬|F1F2|Ϊ°ë¾¶µÄÔ²ÓëË«ÇúÏßÔÚµÚÒ»¡¢¶þÏóÏÞÄÚÒÀ´Î½»ÓÚA£¬BÁ½µã£¬Èô|F1B|=3|F2A|£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{5}{4}$B£®$\frac{4}{3}$C£®$\frac{3}{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=£¨x-t£©|x|£¨t¡ÊR£©£¬Èô´æÔÚt¡Ê£¨0£¬2£©£¬¶ÔÓÚÈÎÒâx¡Ê[-1£¬2]£¬²»µÈʽf£¨x£©£¾x+a¶¼³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$a¡Ü-\frac{1}{4}$B£®a¡Ü0C£®$a¡Ü\frac{1}{4}$D£®a¡Ü2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÈôÇúÏßy=axÓëy=logax£¨a£¾1£©ÓÐÒ»¸ö¹«¹²µãA£¬ÇÒÕâÁ½ÌõÇúÏßÔÚµãA´¦µÄÇÐÏßµÄбÂʶ¼ÊÇ1£¬ÔòaµÄֵΪ${e}^{\frac{1}{e}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªZ=4-3i£¬ÔòZÄ£³¤Îª5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èç¹ûÏòÁ¿$\overrightarrow a=£¨n£¬1£©$Óë$\overrightarrow b=£¨4£¬n£©$¹²Ïߣ¬ÇÒ·½ÏòÏà·´£¬ÔònµÄֵΪ£¨¡¡¡¡£©
A£®¡À2B£®-2C£®2D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÉèÍÖÔ²$\frac{{x}^{2}}{10}$+y2=1ºÍË«ÇúÏß$\frac{{x}^{2}}{8}$-y2=1µÄ¹«¹²½¹µã·Ö±ðΪF1£¬F2£¬PÊÇÕâÁ½ÇúÏߵĽ»µã£¬Ôò¡÷PF1F2µÄÍâ½ÓÔ²°ë¾¶Îª£¨¡¡¡¡£©
A£®1B£®2C£®2$\sqrt{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸