精英家教网 > 高中数学 > 题目详情
已知圆C:(x-3)2+(y-4)2=4和直线l:kx-y-4k+3=0
(1)求证:不论k取什么值,直线和圆总相交;
(2)求k取何值时,圆被直线截得的弦最短,并求最短弦的长.
【答案】分析:(1)由直线l的方程y-3=k(x-4)可得直线l恒通过定点(4,3),而点(4,3)在圆的内部,故直线l与圆C总相交.
(2)先求出圆心到直线l的距离为d,设弦长为L,则,再根据L的解析式,利用基本不等式求得
L的最小值.
解答:解:(1)证明:由直线l的方程可得y-3=k(x-4),则直线l恒通过定点(4,3),把(4,3)代入圆C的方程,得(4-3)2+(3-4)2=2<4,
所以点(4,3)在圆的内部,所以直线l与圆C总相交.
(2)设圆心到直线l的距离为d,则
又设弦长为L,则,即  =4-(1+)=3-≥2.
∴当k=1时,
∴Lmin=2,所以圆被直线截得最短的弦长为2
点评:本题主要考查直线过定点问题,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(Ⅰ)若l1与圆相切,求l1的方程;
(Ⅱ)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,求证:AM•AN为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆C:(x-3)2+(y-4)2=4,
(Ⅰ)若直线l1过定点A(1,0),且与圆C相切,求l1的方程;
(Ⅱ)若圆D的半径为3,圆心在直线l2:x+y-2=0上,且与圆C外切,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=4,
(1)直线l1过定点A (1,0).若l1与圆C相切,求l1的方程;
(2)直线l2过B(2,3)与圆C相交于P,Q两点,求线段PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=4,
(Ⅰ)若a=y-x,求a的最大值和最小值;
(Ⅱ)若圆D的半径为3,圆心在直线L:x+y-2=0上,且与圆C外切,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x+3)2+(y-4)2=4.
(1)若直线l1过点A(-1,0),且与圆C相切,求直线l1的方程;
(2)若圆D的半径为4,圆心D在直线l2:2x+y-2=0上,且与圆C内切,求圆D的方程.

查看答案和解析>>

同步练习册答案