【题目】在平面直角坐标系
中,椭圆
过点
,焦点
,圆
的直径为
.
![]()
(1)求椭圆
及圆
的方程;
(2)设直线
与圆
相切于第一象限内的点
,直线
与椭圆
交于
两点.若
的面积为
,求直线
的方程.
【答案】(1)
,
;(2)
.
【解析】
(1)由椭圆焦点可以确定
,再利用点
代入椭圆方程即可求出
,从而得到椭圆方程;由圆O的直径为
,即可知圆心坐标为
,半径为
,从而得到圆的方程.
(2)设切点坐标为
,即可表示出直线
的方程,联立直线
的方程与椭圆方程,消去
得到关于
的一元二次方程,利用求根公式求出
,然后利用弦长公式表示
,而由条件可求出
,结合
,即可求出
,从而求出直线
的方程.
(1)因为椭圆C的焦点为
,
可设椭圆C的方程为
.
又点
在椭圆C上,所以
,解得![]()
因此,椭圆C的方程为
.
因为圆O的直径为
,所以其方程为
.
(2)设直线
与圆O相切于
,
则
,所以直线
的方程为
,
即
.由
消去y,得
①
因为三角形OAB的面积为
,所以
,从而
,
设
,由①得
,
所以![]()
.因为
,
所以
,即
,解得
舍去),
则
,因此P的坐标为
.
故直线l的方程为:
.
科目:高中数学 来源: 题型:
【题目】已知三棱锥
(如图1)的平面展开图(如图2)中,四边形
为边长为
的正方形,△ABE和△BCF均为正三角形,在三棱锥
中:
(I)证明:平面
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)若点
在棱
上,满足
,
,点
在棱
上,且
,求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,
是椭圆短轴的一个顶点,且
是面积为
的等腰直角三角形.
(1)求椭圆
的标准方程;
(2)已知直线
:
与椭圆
交于不同的
,
两点,若椭圆
上存在点
,使得四边形
恰好为平行四边形,求直线
与坐标轴围成的三角形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】继空气净化器之后,某商品成为人们抗雾霾的有力手段,根据该商品厂提供的数据,从2015年到2018年,购买该商品的人数直线上升,根据统计图, 说法错误的是( )
![]()
A. 连续3年,该商品在1月的销售量增长显著。
B. 2017年11月到2018年2月销量最多。
C. 从统计图上可以看出,2017年该商品总销量不超过6000台。
D. 2018年2月比2017年2月该商品总销量少。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.
![]()
(1)由频率分布直方图估计该校高三年级男生平均身高状况;
(2)求这50名男生身高在172 cm以上(含172 cm)的人数;
(3)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.
(1)求图中x的值;
(2)求这组数据的中位数;
(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com