精英家教网 > 高中数学 > 题目详情
(2012•商丘三模)已知函数f(x)=
3xa
-2x2+lnx.
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)若函数f(x)在区间[1,2]上为单调递增函数,求实数a的取值范围.
分析:(I)先对函数f(x)进行求导,令导函数等于0求出x的值,再根据导函数的正负判断函数的单调性,进而确定极值.
(II)已知函数f(x)在区间[1,2]上为单调递增函数,即f′(x)≥0在区间[1,2]上恒成立,然后用分离参数求最值即可.
解答:解:(Ⅰ)a=1时,f(x)=3x-2x2+lnx,定义域为(0,+∞).…(1分)
f′(x)=
1
x
-4x+3=
-4x2+3x+1
x
=
-(4x+1)(x-1)
x
(x>0),…(3分)
当x∈(0,1),f'(x)>0,函数f(x)单调递增;.
当x∈(1,+∞),f'(x)<0,函数f(x)单调递减,…(5分)
∴f(x)有极大值f(1)=1,无极小值.…(6分)
(Ⅱ)f′(x)=
3
a
-4x+
1
x
,…(7分)
∵函数f(x)在区间[1,2]上为单调递增函数,
∴x∈[1,2]时,f′(x)=
3
a
-4x+
1
x
≥0
恒成立.
即 
3
a
≥4x-
1
x
在[1,2]恒成立,…(9分)
h(x)=4x-
1
x
,因函数h(x)在[1,2]上单调递增,
所以
3
a
≥h(2)
,即
3
a
15
2
,…(11分)
解得0<a≤
2
5
,即a的取值范围是(0,
2
5
]
.…(12分)
点评:本题考查利用导数研究函数的极值和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•商丘三模)已知等比数列{an}的前n项和Sn=2n+m(m∈R).
(Ⅰ)求m的值及{an}的通项公式;
(Ⅱ)设bn=2log2an-13,数列{bn}的前n项和为Tn,求使Tn最小时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知不等式2|x-3|+|x-4|<2a.
(Ⅰ)若a=1,求不等式的解集;
(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
3
,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.
(Ⅰ)求证:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱锥B-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知实数x,y满足
x-y≤1
x≥
1
2
2x+y≤4
,则x-3y的最大值为
2
2

查看答案和解析>>

同步练习册答案