【题目】已知函数
相邻两对称轴间的距离为
,若将
的图像先向左平移
个单位,再向下平移1个单位,所得的函数
为奇函数.
(1)求
的解析式,并求
的对称中心;
(2)若关于
的方程
在区间
上有两个不相等的实根,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以下茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(Ⅰ)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;
(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记
表示抽到“极满意”的人数,求
的分布列及数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的方程
为抛物线
上一点,
为抛物线的焦点.
(I)求
;
(II)设直线
与抛物线
有唯一公共点
,且与直线
相交于点
,试问,在坐标平面内是否存在点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆的标准方程;
(2)若直线
与椭圆
相交于
两点且
.求证:
的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,曲线
在点
处切线与直线
垂直(其中
为自然对数的底数).
(1)求
的解析式及单调减区间;
(2)是否存在常数
,使得对于定义域的任意
恒成立,若存在,求出
的值;若
不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是椭圆
上任一点,点
到直线
的距离为
,到点
的距离为
,且
.直线
与椭圆
交于不同两点
(
都在
轴上方),且
.
![]()
(1)求椭圆
的方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com