精英家教网 > 高中数学 > 题目详情
已知双曲线的渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为   
【答案】分析:先确定x2+y2-6x+5=0的圆心坐标与半径为2,利用双曲线的渐近线均和圆C:x2+y2-6x+5=0相切,建立方程,即可求得几何量,从而可求双曲线方程.
解答:解:x2+y2-6x+5=0的圆心坐标为(3,0),半径为2,则双曲线的右焦点为(3,0)
设双曲线方程为,则渐近线方程为bx±ay=0
∵双曲线的渐近线均和圆C:x2+y2-6x+5=0相切,

∴3b=2c=6
∴b=2
∴a2=c2-b2=5
∴双曲线的方程为
故答案为:
点评:本题考查圆的标准方程,考查双曲线的几何性质,利用直线与圆相切是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•开封一模)已知双曲线的渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为
x2
5
-
y2
4
=1
x2
5
-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省高三9月月考理科数学试卷(解析版) 题型:选择题

已知双曲线的渐近线均和圆相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为

    A.      B.

 C.      D.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省豫北六校高三第二次精英联赛考试理科数学试卷 题型:选择题

已知双曲线的渐近线均和圆相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为       

A.      B.       C.      D.

 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知双曲线的渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为________.

查看答案和解析>>

同步练习册答案