(本题14分)
设函数
.
(1)求函数
的单调递增区间;
(2)若关于
的方程
在区间
内恰有两个相异的实根,求实数
的取值范围.
(Ⅰ)函数
的单调递增区间为
.(Ⅱ)
.
【解析】
试题分析:(1)确定出函数的定义域是解决本题的关键,利用导数作为工具,求出该函数的单调递增区间即为f'(x)>0的x的取值区间;
(2)方法一:利用函数思想进行方程根的判定问题是解决本题的关键.构造函数,研究构造函数的性质尤其是单调性,列出该方程有两个相异的实根的不等式组,求出实数a的取值范围.
方法二:先分离变量再构造函数,利用函数的导数为工具研究构造函数的单调性,根据题意列出关于实数a的不等式组进行求解.
解:(Ⅰ)函数
的定义域为
,………………………1分
∵
,………………………2分
∵
,则使
的
的取值范围为
,
故函数
的单调递增区间为
. …………………………4分
(Ⅱ)方法1:∵
,
∴
.…………………6分
令
,
∵
,且
,
由
.
∴
在区间
内单调递减,在区间
内单调递增,……………………9分
故
在区间
内恰有两个相异实根
……11分
即
解得:
.
综上所述,
的取值范围是
.………………13分
方法2:∵
,
∴
.………………6分
即
,
令
, ∵
,且
,
由
.
∴
在区间
内单调递增,在区间
内单调递减.………9分
∵
,
,
,
又
,故
在区间
内恰有两个相异实根
.……11分
即
.
综上所述,
的取值范围是
. …………………14分
考点:本试题主要考查了导数的工具作用,考查学生利用导数研究函数的单调性的知识.考查学生对方程、函数、不等式的综合问题的转化与化归思想,将方程的根的问题转化为函数的图象交点问题,属于综合题型
点评:解决该试题的关键将方程的根的问题转化为函数的图象交点问题。
科目:高中数学 来源: 题型:
(本题14分)设函数
, 当P(x,y)是函数y=f(x)图像上的点时,点
是函数y=g(x)图象上的点。①写出函数y=g(x)的解析式;②若当
时,恒有
试确定a的取值范围。
查看答案和解析>>
科目:高中数学 来源:2015届广东始兴风度中学高一上期末考试数学试卷(解析版) 题型:解答题
(本题14分)设函数
的定义域为
,
(Ⅰ)若
,求
的取值范围;
(Ⅱ)求
的最大值与最小值,并求出最值时对应的
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com