已知函数f(x)=sin2x+acos2x(a∈R,a为常数),且
是函数y=f(x)的零点.
(1)求a的值,并求函数f(x)的最小正周期;
(2)若x∈[0,
],求函数f(x)的值域,并写出f(x)取得最大值时x的值.
(1)由于
是函数y=f(x)的零点,
即x=
是方程f(x)=0的解,
从而f(
)=sin
+ac
os2
=0,
则1+
a=0,解得a=-2.
所以f(x)=sin2x-2cos2x=sin2x-cos2x-1,
则f(x)=
sin(2x-
)-1,
所以函数f(x)的最小正周期为π.
(2)由x∈[0,
],得2x-
∈[-
,
],
则sin(2x-
)∈[-
,1],
则-1≤
sin(2x-
)≤
,
-2≤
sin(2x-
)-1≤
-1,
∴函数f(x)的值域为[-2,
-1].
当2x-
=2kπ+
(k∈Z),
即x=kπ+
时,f(x)有最大值,
又x∈[0,
],故k=0时,x=
,
f(x)有最大值
-1.
科目:高中数学 来源:云南省昆明一中2010届高三上学期期中考试数学文科试题 题型:044
已知函数f(x)=
x3+ax2+bx+c
(Ⅰ)若函数f(x)在x=1时有极值且在函数图象上的点(0,1)处的切线与直线3x+y=0平行,求f(x)的解析式;
(Ⅱ)当f(x)在x∈(0,1)取得极大值且在x∈(1,2)取得极小值时,设点M(b-2,a+1)所在平面区域为S,经过原点的直线L将S分为面积比为1∶3的两部分,求直线L的方程.
查看答案和解析>>
科目:高中数学 来源:广东省广州市2012届高三第一次模拟考试数学文科试题 题型:044
已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)求函数f(x)的单调递增区间;
(2)若对任意a∈[3,4],函数f(x)在R上都有三个零点,求实数b的取值范围.
已知椭圆x2+
=1的左、右两个顶点分别为A、B.曲线C是以A、B两点为顶点,离心率为
的双曲线,设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T.
(1)求曲线C的方程;
(2)设点P、T的横坐标分别为x1,x2,证明:x1·x2=1;
(3)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且
,求S
-S
的取值范围.
查看答案和解析>>
科目:高中数学 来源:福建省师大附中2012届高三高考模拟数学文科试题 题型:044
已知函数f(x)=x3+ax2+bx(x≠0)只有一个零点x=3.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数
在区间(0,2)上有极值点,求m取值范围;
(Ⅲ)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t;若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=ax3+
x2在x=-1处取得极值,记g(x)=
,程序框图如图所示,若输出的结果S>
,则判断框中可以填入的关于n的判断条件是 ( )
![]()
A.n≤2 011? B.n≤2 012?
C.n>2 011? D.n>2 012?
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西赣州四所重点中学高三上学期期末联考理数学试卷(解析版) 题型:选择题
已知函数f(x)=ax3+
x2在x=-1处取得极大值,记g(x)=
。程序框图如图所示,若输出的结果S=
,则判断框中可以填入的关于n的判断条件是( )
![]()
A.n≤2013 B.n≤2014 C.n>2013 D.n>2014
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com