【题目】通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如下的列联表:
![]()
随机变量
经计算,统计量K2的观测值k0≈4.762,参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”
C. 有97.5%以上的把握认为“爱好该项运动与性别有关”
D. 有97.5%以上的把握认为“爱好该项运动与性别无关”
科目:高中数学 来源: 题型:
【题目】假设关于某种设备的使用年限
(年)与所支出的维修费用
(万元)有如下统计:
| 2 | 3 | 4 | 5 | 6 |
| 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知
,
.
, ![]()
(1)求
,
;
(2)
与
具有线性相关关系,求出线性回归方程;
(3)估计使用年限为10年时,维修费用约是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),其中
.以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求出曲线
的普通方程和曲线
的直角坐标方程;
(2)已知曲线
与
交于
,
两点,记点
,
相应的参数分别为
,
,当
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图像可以由y=cos2x的图像先纵坐标不变横坐标伸长到原来的2倍,再横坐标不变纵坐标伸长到原来的2倍,最后向右平移
个单位而得到.
⑴求f(x)的解析式与最小正周期;
⑵求f(x)在x∈(0,π)上的值域与单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一种产品,第一年投入资金1000万元,出售产品收入40万元,预计以后每年的投入资金是上一年的一半,出售产品所得收入比上一年多80万元,同时,当预计投入的资金低于20万元时,就按20万元投入,且当年出售产品收入与上一年相等.
(1)求第
年的预计投入资金与出售产品的收入;
(2)预计从哪一年起该公司开始盈利?(注:盈利是指总收入大于总投入)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以
为极点,
轴的非负半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求曲线
的极坐标方程;
(2)设直线
与曲线
相交于
两点,求
的值.
【答案】(1)曲线
的极坐标方程为:
;(2)6.
【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线
的普通方程,再根据
化为极坐标方程;(2)将直线l的极坐标方程代入曲线
的极坐标方程得
,再根据
求
的值.
试题解析:解:(1)将方程
消去参数
得
,
∴曲线
的普通方程为
,
将
代入上式可得
,
∴曲线
的极坐标方程为:
. -
(2)设
两点的极坐标方程分别为
,
由
消去
得
,
根据题意可得
是方程
的两根,
∴
,
∴
.
【题型】解答题
【结束】
23
【题目】选修4—5:不等式选讲
已知函数
.
(1)当
时,求关于x的不等式
的解集;
(2)若关于x的不等式
有解,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是公差不为零的等差数列,满足
,且
、
、
成等比数列.
(1)求数列
的通项公式;
(2)设数列
满足
,求数列
的前
项和
.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)设等差数列
的公差为
,由a3=7,且
、
、
成等比数列.可得
,解之得即可得出数列
的通项公式;
2)由(1)得
,则
,由裂项相消法可求数列
的前
项和
.
试题解析:(1)设数列
的公差为
,且
由题意得
,
即
,解得
,
所以数列
的通项公式
.
(2)由(1)得![]()
,
![]()
.
【题型】解答题
【结束】
18
【题目】四棱锥
的底面
为直角梯形,
,
,
,
为正三角形.
![]()
(1)点
为棱
上一点,若
平面
,
,求实数
的值;
(2)求点B到平面SAD的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com