精英家教网 > 高中数学 > 题目详情
已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足==0.
(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.
【答案】分析:(Ⅰ)设出N点的坐标,由已知条件可知P为MN的中点,由题意设出P和M的坐标,求出的坐标,代入可求动点N的轨迹E的方程;
(Ⅱ)设出直线l的方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系写出A,B两点的纵坐标的和与积,假设存在点C(m,0)满足条件,则,由
|CA|2+|CB|2=|AB|2成立得到,代入坐标后得到关于m的一元二次方程,分析知方程有解,从而得到答案.
解答:解:(Ⅰ)设N(x,y),则由,得P为MN的中点.
,M(-x,0).

,即y2=4x.
∴动点N的轨迹E的方程y2=4x.
(Ⅱ)设直线l的方程为y=k(x-1),由,消去x得
设A(x1,y1),B(x2,y2),则 ,y1y2=-4.
假设存在点C(m,0)满足条件,则

=
=
=

∴关于m的方程有解.
∴假设成立,即在x轴上存在点C,使得|CA|2+|CB|2=|AB|2成立.
点评:本题考查了轨迹方程的求法,考查了平面向量数量积的运算,考查了直线与圆锥曲线的关系,直线与圆锥曲线的关系问题是考查的中点,常和弦长问题、存在性问题结合考查,解答时往往采用“设而不求”的解题方法,借助于一元二次方程的根与系数关系解题,该种类型的问题计算量较大,要求学生有较强的运算能力,是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•兰州一模)已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足
PN
+
1
2
NM
=
0
PM
PF
=0.
(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足
PN
+
1
2
NM
=0
PM
PF
=0

(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:兰州一模 题型:解答题

已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足
PN
+
1
2
NM
=0
PM
PF
=0

(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足
PN
+
1
2
NM
=
0
PM
PF
=0.
(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.

查看答案和解析>>

同步练习册答案