正方体ABCD-A1B1C1D1中,棱长为
,M为正方形DCC1D1的中心,E、F分别为A1D1、BC的中点
(1)求证:AM⊥平面B1FDE;
(2)求点A到平面EDFB1的距离;
(3)求二面角A-DE-F的大小。
(1)见解析(2)
(3) ![]()
(1)证明:连接AM,过M作MG⊥CD于G,连接AG
∵正方体ABCD-A1B1C1D1,MG⊥CD
∴MG⊥平面ABCD
又∵M为正方形DCC1D1的中心,MG⊥CD
∴G为CD中点
在正方形ABCD中,F为CB中点 ∴CF=DG
又∵AD=DC ∠DCF=∠ADG=Rt∠
∴△ADG≌△DCF ∴∠AGD=∠DFC ∴AG⊥DF
由MG⊥平面ABCD,AG⊥DF可得AM⊥DF,
同理可得AM⊥DE
∴AM⊥平面B1FDE
(2)设A到平面DEB1F的距离为![]()
∵E到平面ADF的距离为![]()
∴
∴![]()
又∵
![]()
![]()
∴
(3)过F作FP⊥AD于P,过P作PQ⊥DE于Q,连接FQ
∵FP⊥平面DEP,PQ⊥DE
∴FQ⊥DE
∴∠FQP为二面角A-DE-F的平面角
∵![]()
∴![]()
在R t△FPQ中
∴二面角A-DE-F的大小为
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| GP |
| GH |
| ||
| 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com