精英家教网 > 高中数学 > 题目详情

已知函数

(Ⅰ)当时,求函数的极大值和极小值;

(Ⅱ)当时,恒成立,求的取值范围.

 

【答案】

(Ⅰ)极大值为2,极小值为-2;(Ⅱ)

【解析】

试题分析:(Ⅰ)当时,求函数的极大值和极小值,与极值有关,可利用导数解决,先对函数求导,求出导数等零点,在判断导数等零点两边的符号,从而得出极大值和极小值,本题当时,,得,由导数的符号从而得极大值和极小值;(Ⅱ)当时,恒成立,求的取值范围,等价于,又因为,可得恒成立,令  即,解得

试题解析:(Ⅰ)递增区间递减区间,极大值为2,极小值为-2

(Ⅱ)等价于上恒成立。

因为

上恒成立等价于

考点:函数极值,二次函数恒成立问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(江西卷理22)已知函数

.当时,求的单调区间;

.对任意正数,证明:

查看答案和解析>>

科目:高中数学 来源:2011届陕西省师大附中、西工大附中高三第七次联考理数 题型:解答题

(本题13分)
已知函数.
(1)当时,求的单调区间;
(2)若单调增加,在单调减少,证明:<6.

查看答案和解析>>

科目:高中数学 来源:2014届河南省高二下学期第一次阶段测试文科数学试卷(解析版) 题型:解答题

已知函数

(1)当时,求的解集

(2)若关于的不等式的解集是,求的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知函数

 (Ⅰ)当时,求的极小值;

 (Ⅱ)若直线对任意的都不是曲线的切线,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省梅州市高三年级10月月考文科数学试卷 题型:解答题

(满分14分)已知函数 

       (1)当时,求曲线在点处的切线方程;

       (2)当时,讨论的单调性

 

查看答案和解析>>

同步练习册答案