【题目】某地草场出现火灾,火势正以每分钟
的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后
分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火
,所消耗的灭火材料、劳务津贴等费用为每人每分钟
元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为30元.
(1)设派
名消防队员前去救火,用
分钟将火扑灭,试建立
与
的函数关系式;
(2)问应该派多少消防队员前去救火,才能使总损失最少?(注:总损失费=灭火劳务津贴+车辆、器械装备费+森林损失费)
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是边长为
的正方形,
,
是
的中点,
是线段
上异于端点的一点,平面
平面
,
.
![]()
(Ⅰ)证明:
;
(Ⅱ)若
与平面
所成的角的正弦值为
,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】巳知集合P={
},Q={
},将P∪Q的所有元素从小到大依次排列构成一个数列{
},记
为数列{
}的前n项和,则使得
<1000成立的
的最大值为
A. 9 B. 32 C. 35 D. 61
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将直角三角形
沿斜边上的高
折成
的二面角,已知直角边
,那么下面说法正确的是( )
A. 平面
平面
B. 四面体
的体积是![]()
C. 二面角
的正切值是
D.
与平面
所成角的正弦值是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的离心率为
,焦距为
,直线
过椭圆的
左焦点.
(1)求椭圆
的标准方程;
(2)若直线
与
轴交于点
是椭圆
上的两个动点,
的平分线在
轴上,
.试判断直线
是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是___(请填写所有正确的命题序号).
①命题“若
,则
”的否命题为:“若
,则
”;
②命题“若
,则
”的逆否命题为真命题;
③条件
,条件
,则
是
的充分不必要条件;
④已知
时,
,若
是锐角三角形,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.
![]()
![]()
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
附:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为双曲线
的左、右焦点,过
作垂直于
轴的直线,并在
轴上方交双曲线于点
,且
.
![]()
(1)求双曲线
的方程;
(2)过圆
上任意一点
作切线交双曲线
于
两个不同点,
中点为
,若
,求实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com