精英家教网 > 高中数学 > 题目详情
精英家教网如图,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC=
2
3
AB,又P0⊥平面ABC,DA∥PO,DA=AO=
1
2
PO.
(I)求证:PB∥平面COD;
(II)求证:PD⊥平面COD.
分析:(I)根据线面垂直,得到线线平行,然后即可证明线面垂直.
(II)根据题意,设出OA并表示出OP,OB,DA,然后通过线面垂直得到DA⊥平面ABC,在△PDO中,根据勾股定理判定直角三角形,然后得到PD⊥DO,最终综合即可证明线面垂直.
解答:精英家教网证明:∵PO⊥平面ABCD,AD∥PO,
∴DA⊥AB,PO⊥AB
又DA=AO=
2
3
AB.∴∠AOD=
π
4

又AO=
1
2
PO,∴OB=OP∴∠OBP=
π
4
∴OD∥PB
又PB?平面OCD,OD?平面COD.∴PB∥平面COD.
(II)依题意可设OA=a,则PO=OB=OC=2a,DA=a,
由DA∥PO,且PO⊥平面ABC,
知DA⊥平面ABC.
从而PD=DO=
2
a,
在△PDO中∵PD=DO=
2
a,PO=2a∴△PDO为直角三角形,故PD⊥DO
又∵OC=OB=2a,∠ABC=45°,∴CO⊥AB
又PO⊥平面ABC,∴CO⊥平面PAB、
故CO⊥PD.
∵CO与DO相交于点O.
∴PD⊥平面COD.
点评:本题考查直线与平面垂直的判定,以及直线与平面平行的判定,通过在几何体中建立关系得以证明结论,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案