精英家教网 > 高中数学 > 题目详情
在区间[-1,1]上任取两实数a、b,求二次方程x2+2ax+b2=0的两根都为实数的概率.
分析:本题考查的知识点是几何概型的意义,关键是要找出(a,b)对应图形的面积,及满足条件“关于x的一元二次方程x2+2ax+b2=0有实根”的点对应的图形的面积,然后再结合几何概型的计算公式进行求解.
解答:精英家教网解:如下图所示:
试验的全部结果所构成的区域为{(a,b)|-1≤a≤1,-1≤b≤1}(图中矩形所示).其面积为4.
构成事件“关于x的一元二次方程x2+2ax+b2=0有实根”的区域为
{(a,b)|-1≤a≤1,-1≤b≤1,a2≥b2}(如图阴影所示).
所以所求的概率为=
2
× 
2
4
=
1
2

故答案为:
1
2
点评:本题考查的知识点是几何概型的意义,关键是要找出关于x的一元二次方程x2+2ax+b2=0有实根的点对应的图形的面积,并将其和长方形面积一齐代入几何概型计算公式进行求解.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江西省新余四中高三(上)第一次周周练数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市会昌中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省五校协作体高二(上)联合竞赛数学试卷(文科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市会昌中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省吉安市白鹭洲中学高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

同步练习册答案