精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3x,x∈[-2,2]和函数g(x)=ax-1,x∈[-2,2],若对于?x1∈[-2,2],总?x0∈[-2,2],使得g(x0)=f(x1)成立,则实数a的取值范围
(-∞,-
3
2
]∪[
3
2
,+∞)
(-∞,-
3
2
]∪[
3
2
,+∞)
分析:根据对于?x1∈[-2,2],总?x0∈[-2,2],使得g(x0)=f(x1)成立,得到函数f(x)在[-2,2]上值域是g(x)在[-2,2]上值域的子集,下面利用导数求函数f(x)、g(x)在[-2,2]上值域,并列出不等式,解此不等式组即可求得实数a的取值范围
解答:解:∵f(x)=x3-3x,
∴f′(x)=3(x-1)(x+1),
当x∈[-2,-1],f′(x)≥0,x∈(-1,1),f′(x)<0;x∈(1,2],f′(x)>0.
∴f(x)在[-2,-1]上是增函数,(-1,1)上递减,(1,2)递增;
且f(-2)=-2,f(-1)=2,f(1)=-2,f(2)=2.
∴f(x)的值域A=[-2,2];
又∵g(x)=ax+1(a>0)在[-2,2]上是增函数,
∴g(x)的值域B=[-2a-1,2a-1];
根据题意,有A⊆B
-2a-1≤-2
2a-1≥2
a>0
⇒a≥
3
2

同理g(x)=ax+1(a<0)在[-2,2]上是减函数,
可以求出a≤-
3
2

故实数a的取值范围是:(-∞,-
3
2
]∪[-
3
2
,+∞).
故答案为:(-∞,-
3
2
]∪[-
3
2
,+∞).
点评:此题是个中档题.考查利用导数研究函数在闭区间上的最值问题,难点是题意的理解与转化,体现了转化的思想.同时也考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案