精英家教网 > 高中数学 > 题目详情

(本题满分16分).已知定义在R上的函数,其中a为常数.

(1)若x=1是函数的一个极值点,求a的值;

(2)若函数在区间(-1,0)上是增函数,求a的取值范围;

(3)若函数,在x=0处取得最大值,求正数a的取值范围.

解:(I)

的一个极值点,

(II)①当a=0时,在区间(-1,0)上是增函数,符合题意;

②当

当a>0时,对任意符合题意;

当a<0时,当符合题意;

综上所述,

(III)

 

设方程(*)的两个根为式得,不妨设.

时,为极小值,所以在[0,2]上的最大值只能为

时,由于在[0,2]上是单调递减函数,所以最大值为,所以在[0,2]

上的最大值只能为

又已知在x=0处取得最大值,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题满分16分)两个数列{an},{bn},满足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(参考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求证:{bn}为等差数列的充要条件是{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.

已知函数是常数,且),对定义域内任意),恒有成立.

(1)求函数的解析式,并写出函数的定义域;

(2)求的取值范围,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)已知数列的前项和为,且.数列中,

 .(1)求数列的通项公式;(2)若存在常数使数列是等比数列,求数列的通项公式;(3)求证:①;②

查看答案和解析>>

科目:高中数学 来源:江苏省私立无锡光华学校2009—2010学年高二第二学期期末考试 题型:解答题

本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4;求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题

(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)

已知函数

(1)判断并证明上的单调性;

(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值;

(3)若上恒成立 , 求的取值范围.

 

查看答案和解析>>

同步练习册答案