精英家教网 > 高中数学 > 题目详情

已知椭圆C:数学公式(a>b>0)的离心率为数学公式,且短轴的一个端点到左焦点F的距离是数学公式,经过点F且不垂直于x轴的直线l交椭圆C于A,B两点.点O为坐标原点.
(I)求椭圆C的标准方程;
(II)在线段OF上存在点M(m,0)(点M不与点O,F重合),使得以MA,MB为邻边的平行四边形MANB是菱形,求m的取值范围.

解:(Ⅰ)因为短轴的一个端点到左焦点点F的距离是,离心率为
所以a=,c=1
所以b2=a2-c2=1
所以椭圆C的标准方程是 …(4分)
(Ⅱ)因为直线l与x轴不垂直,且交椭圆C于A,B两点,所以设直线l的方程为y=k(x+1)(k≠0)
代入椭圆方程,消去y可得(1+2k2)x2+4k2x+2k2-2=0.
设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=
因为以MA,MB为邻边的平行四边形MANB是菱形,所以
所以(x1+x2-2m,y1+y2)•(x2-x1,y2-y1)=0
因为x1≠x2
所以(x1+x2-2m)+k2(x2+x1+2)=0.
所以(-2m)+k2+2)=0.
所以
因为k≠0,所以
所以m的取值范围是.…(14分)
分析:(Ⅰ)利用短轴的一个端点到左焦点点F的距离是,离心率为,可求椭圆几何量,从而可得椭圆C的标准方程;
(Ⅱ)设直线l的方程为y=k(x+1)(k≠0)代入椭圆方程,消去y可得一元二次方程,利用以MA,MB为邻边的平行四边形MANB是菱形,可得,从而可得,由此可得m的取值范围.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查向量知识的运用,正确运用韦达定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建省龙岩市高三(上)期末质量检查一级达标数学试卷(文科)(解析版) 题型:解答题

已知椭圆C: (a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.
(ⅰ)若满足(O为坐标原点),求△AOB的面积;
(ⅱ)当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:解答题

(12分)已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.

 ①求椭圆C的方程.

 ②当⊿AMN的面积为时,求k的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:选择题

已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为kk>0)的直线与椭圆C相交于A、B两点,若。则 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步练习册答案