精英家教网 > 高中数学 > 题目详情
命题“?x∈R,x2+ax+1<0”的否定是
?x∈R,x2+ax+1≥0
?x∈R,x2+ax+1≥0
分析:利用存在性命题”的否定一定是“全称命题”.写出结果即可.
解答:解:∵“全称命题”的否定一定是“存在性命题”,
命题“?x∈R,x2+ax+1<0”的否定是“?x∈R,x2+ax+1≥0”.
故答案为:?x∈R,x2+ax+1≥0.
点评:命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2+x>0”的否定是“
?x∈R,x2+x≤0
?x∈R,x2+x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:其中真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)给定下列四个命题:
①“x=
π
6
”是“sinx=
1
2
”的充分不必要条件;    
②若“p∨q”为真,则“p∧q”为真;
③命题“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
④线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强;
其中为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2+ax-4a<0”的否定是
 

查看答案和解析>>

同步练习册答案