【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点(
,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.
【答案】
(1)证明:设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM),
将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,
则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,
则x1+x2=
,则xM=
=
,yM=kxM+b=
,
于是直线OM的斜率kOM=
=
,
即kOMk=﹣9,
∴直线OM的斜率与l的斜率的乘积为定值.
(2)解:四边形OAPB能为平行四边形.
∵直线l过点(
,m),
∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,
即k2m2>9b2﹣9m2,
∵b=m﹣
m,
∴k2m2>9(m﹣
m)2﹣9m2,
即k2>k2﹣6k,
则k>0,
∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,
由(1)知OM的方程为y=
x,
设P的横坐标为xP,
由
得
,即xP=
,
将点(
,m)的坐标代入l的方程得b=
,
即l的方程为y=kx+
,
将y=
x,代入y=kx+
,
得kx+
=
x
解得xM=
,
四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM,
于是
=2×
,
解得k1=4﹣
或k2=4+
,
∵ki>0,ki≠3,i=1,2,
∴当l的斜率为4﹣
或4+
时,四边形OAPB能为平行四边形.
【解析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM , 建立方程关系即可得到结论.
【考点精析】通过灵活运用直线的斜率,掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα即可以解答此题.
科目:高中数学 来源: 题型:
【题目】在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )
A.20种
B.22种
C.24种
D.36种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=x2﹣2ax+5.
(1)若a>1,且函数f(x)的定义域和值域均为[1,a],求实数a的值;
(2)若不等式x|f(x)﹣x2|≤1对x∈[
,
]恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=asinx﹣bcosx(a,b为常数,a≠0,x∈R)在x=
处取得最大值,则函数y=f(x+
)是( )
A.奇函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点(
,0)对称
C.奇函数且它的图象关于点(
,0)对称
D.偶函数且它的图象关于点(π,0)对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,E是矩形ABCD中AD边上的点,F是CD上的点,AB=AE=
AD=4,现将△ABE沿BE边折至△PBE位置,并使平面PBE⊥平面BCDE,且平面PBE⊥平面PEF. ![]()
(1)求
的比值;
(2)求二面角E﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知指数函数y=g(x)满足g(3)=8,又定义域为实数集R的函数f(x)=
是奇函数.
(1)讨论函数y=f(x)的单调性;
(2)若对任意的t∈R,不等式f(2t﹣3t2)+f(t2﹣k)>0恒成立,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com