【题目】△ABC的内角A、B、C的对边分别是a、b、c,已知
.
(1)求角A;
(2)若
,△ABC的面积为
,求△ABC的周长.
科目:高中数学 来源: 题型:
【题目】如图,已知圆柱
的底面圆
的半径
,圆柱的表面积为
;点
在底面圆
上,且直线
与下底面所成的角的大小为
,
![]()
(1)求点
到平面
的距离;
(2)求二面角
的大小(结果用反三角函数值表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于概率和统计的几种说法:①10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为
,中位数为
,众数为
,则
,
,
的大小关系为
;②样本4,2,1,0,-2的标准差是2;③在面积为
的
内任选一点
,则随机事件“
的面积小于
”的概率为
;④从写有0,1,2,…,9的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是
.其中正确说法的序号有______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
空调类 | 冰箱类 | 小家电类 | 其它类 | |
营业收入占比 |
|
|
|
|
净利润占比 |
|
|
|
|
则下列判断中不正确的是( )
A. 该公司2018年度冰箱类电器营销亏损
B. 该公司2018年度小家电类电器营业收入和净利润相同
C. 该公司2018年度净利润主要由空调类电器销售提供
D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】画糖是一种以糖为材料在石板上进行造型的民间艺术,常见于公园与旅游景点.某师傅制作了一种新造型糖画,为了合理定价,先进行试销售,其单价x(元)与销量y(个)相关数据如表:
单价x(元) | 8.5 | 9 | 9.5 | 10 | 10.5 |
销量y(个) | 12 | 11 | 9 | 7 | 6 |
(1)已知销量y与单价x具有线性相关关系,求y关于x的线性回归方程;
(2)若该新造型糖画每个的成本为5.7元,要使得进入售卖时利润最大,请利用所求出的线性回归方程确定单价应该定为多少元?(结果保留到整数)
参考公式:线性回归方程y
x中斜率和截距最小二乘法估计计算公式:
.参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱长为
的正方形
中,点
,
分别是边
,
上的点,且
,将
,
沿
,
折起,使得
,
两点重合于
点上,设
与
交于
点,过点
作
于
点.
![]()
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的左焦点为
,上顶点为
.已知椭圆的短轴长为4,离心率为
.
(1)求椭圆的方程;
(2)设点
在椭圆上,且异于椭圆的上、下顶点,点
为直线
与
轴的交点,点
在
轴的负半轴上.若
(
为原点),且
,求证:直线
的斜率与直线MN的斜率之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
,
,
,
,点
在底面
上的射影是
的中点
,
.
(1)求证:直线
平面
;
(2)若
,
、
分别为
、
的中点,求直线
与平面
所成角的正弦值;
(3)当四棱锥
的体积最大时,求二面角
的大小.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com