(08年长郡中学二模理)(12分) 如图,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点.
(Ⅰ)求
与平面A1C1CA所成角的大小;
(Ⅱ)求二面角B―A1D―A的大小;
(Ⅲ)试在线段AC上确定一点F,使得EF⊥平面A1BD.
![]()
解析:(Ⅰ)连接A1C.∵A1B1C1-ABC为直三棱柱,∴CC1⊥底面ABC,∴CC1⊥BC.
∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分
∴
为
与平面A1C1CA所成角,
.
∴
与平面A1C1CA所成角为
.…………4分
(Ⅱ)分别延长AC,A1D交于G. 过C作CM⊥A1G 于M,连结BM,
∵BC⊥平面ACC1A1,∴CM为BM在平面A1C1CA内的射影,
∴BM⊥A1G,∴∠CMB为二面角B―A1D―A的平面角,
平面A1C1CA中,C1C=CA=2,D为C1C的中点,
∴CG=2,DC=1 在直角三角形CDG中,
,
.
即二面角B―A1D―A的大小为
.……………………8分
(Ⅲ)取线段AC的中点F,则EF⊥平面A1BD.
证明如下:
∵A1B1C1―ABC为直三棱柱,∴B1C1//BC,
∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,
∵EF在平面A1C1CA内的射影为C1F,当F为AC的中点时,
C1F⊥A1D,∴EF⊥A1D.
同理可证EF⊥BD,∴EF⊥平面A1BD.……………………12分
科目:高中数学 来源: 题型:
(08年长郡中学二模理) (12分) 某工厂为了保障安全生产,每月初组织工人参加一次技能测试. 甲、乙两名工人通过每次测试的概率分别是
. 假设两人参加测试是否通过相互之间没有影响.
(I)求甲工人连续3个月参加技能测试至少1次未通过的概率;
(II)求甲、乙两人各连续3个月参加技能测试,甲工人恰好通过2次且乙工人恰好通过1次的概率;
(III)工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求乙工人恰好参加4次测试后被撤销上岗资格的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年长郡中学二模理)(13分)如图,公园有一块边长为2a的等边三角形的边角地,今要修成草地,并使DE把草坪分成面积相等的两部分,如果
。
(1)将用x表示y的函数关系;并指出函数的定义域;
(2)如果DE是灌溉水管,为节约成本,希望它最短,问DE的位置应如何确定?如果DE是观光路线,则希望它最长,问DE的位置应如何确定?说明理由
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年长郡中学二模文)(13分)已知数列
,
是其前
项的和,且
(
≥2),![]()
(1)求数列
的通项公式;
(2)设
,
,是否存在最小的正整数
,使得对于任意的正整数n,有
恒成立?若存在,求出
的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年长郡中学二模文)(13分)设F是抛物线
的焦点,过点M(-1,0)且以
为方向向量的直线顺次交抛物线于A,B两点。
(1)当
时,若
与
的夹角为
,求抛物线的方程;
(2)若点A,B满足
,证明
为定值,并求此时△AFB的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com